Show simple item record

Heteropoly Acid/Nitrogen Functionalized Onion‐like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions

dc.contributor.authorLiu, Wei
dc.contributor.authorQi, Wei
dc.contributor.authorGuo, Xiaoling
dc.contributor.authorSu, Dangsheng
dc.date.accessioned2017-06-16T20:15:43Z
dc.date.available2017-06-16T20:15:43Z
dc.date.issued2016-02
dc.identifier.citationLiu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng (2016). "Heteropoly Acid/Nitrogen Functionalized Onion‐like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions." Chemistry – An Asian Journal 11(4): 491-497.
dc.identifier.issn1861-4728
dc.identifier.issn1861-471X
dc.identifier.urihttps://hdl.handle.net/2027.42/137551
dc.description.abstractA novel heteropoly acid (HPA)/nitrogen functionalized onion‐like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X‐ray photoelectron spectroscopy, NH3 temperature‐programmed desorption and acid–base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity.Know your onion‐like carbon: A heteropoly acid (HPA)/nitrogen functionalized onion‐like carbon (NOLC) hybrid catalyst was successfully synthesized. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the synergistic effect between NOLC and HPA significantly promotes its activity in hydrolysis reactions.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersupport
dc.subject.otheronion-like carbon
dc.subject.otherhydrolysis
dc.subject.otherheteropoly acid
dc.subject.otherheterogeneous catalysis
dc.titleHeteropoly Acid/Nitrogen Functionalized Onion‐like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137551/1/asia201500944.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137551/2/asia201500944-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/asia.201500944
dc.identifier.sourceChemistry – An Asian Journal
dc.identifier.citedreferenceT. Okuhara, H. Watanabe, T. Nishimura, K. Inumaru, M. Misono, Chem. Mater. 2000, 12, 2230 – 2238.
dc.identifier.citedreference 
dc.identifier.citedreferenceY. V. Butenko, V. L. Kuznetsov, A. L. Chuvilin, V. N. Kolomiichuk, S. V. Stankus, R. A. Khairulin, B. Segall, J. Appl. Phys. 2000, 88, 4380 – 4388.
dc.identifier.citedreferenceA. J. Plomp, D. S. Su, K. P. d. Jong, J. H. Bitter, J. Phys. Chem. C 2009, 113, 9865 – 9869.
dc.identifier.citedreferenceS. Kundu, W. Xia, W. Busser, M. Becker, D. A. Schmidt, M. Havenith, M. Muhler, Phys. Chem. Chem. Phys. 2010, 12, 4351 – 4359.
dc.identifier.citedreferenceC. Branca, F. Frusteri, V. Magazu, A. Mangione, J. Phys. Chem. B 2004, 108, 3469 – 3473.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Saito, K. Matsushige, K. Tanaka, Phys. B 2002, 323, 280 – 283;
dc.identifier.citedreferenceE. Mironov, A. Koretz, E. Petrov, Diamond Relat. Mater. 2002, 11, 872 – 876.
dc.identifier.citedreferenceT. Okuhara, N. Mizuno, M. Misono, Appl. Catal. A 2001, 222, 63 – 77.
dc.identifier.citedreferenceH. B. Wang, T. Maiyalagan, X. Wang, ACS Catal. 2012, 2, 781 – 794.
dc.identifier.citedreferenceS. Ullah, J. J. S. Acuña, A. A. Pasa, S. A. Bilmes, M. E. Vela, G. Benitez, U. P. Rodrigues-Filho, Appl. Surf. Sci. 2013, 277, 111 – 120.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. A. Schwegler, P. Vinke, M. van der Eijk, H. van Bekkum, Appl. Catal. A 1992, 80, 41 – 57;
dc.identifier.citedreferenceY. Kim, S. Shanmugam, ACS Appl. Mater. Interfaces 2013, 5, 12197 – 12204;
dc.identifier.citedreferenceJ. P. Tessonnier, S. Goubert-Renaudin, S. Alia, Y. Yan, M. A. Barteau, Langmuir 2013, 29, 393 – 402.
dc.identifier.citedreferenceM. Fournier, R. Thouvenot, C. Rocchiccioli-Deltcheff, J. Chem. Soc. Faraday Trans. 1991, 87, 349 – 356.
dc.identifier.citedreferenceA. Jha, A. C. Garade, S. P. Mirajkar, C. V. Rode, Ind. Eng. Chem. Res. 2012, 51, 3916 – 3922.
dc.identifier.citedreferenceH. L. Li, H. Sun, W. Qi, M. Xu, L. X. Wu, Angew. Chem. Int. Ed. 2007, 46, 1300 – 1303; Angew. Chem. 2007, 119, 1322 – 1325.
dc.identifier.citedreferenceB. B. Bardin, S. V. Bordawekar, M. Neurock, R. J. Davis, J. Phys. Chem. B 1998, 102, 10817 – 10825.
dc.identifier.citedreferenceC. A. Lane, M. F. Cheung, G. F. Dorsey, J. Am. Chem. Soc. 1968, 90, 6492 – 6494.
dc.identifier.citedreferenceA. Krüger, F. Kataoka, M. Ozawa, T. Fujino, Y. Suzuki, A. E. Aleksenskii, A. Y. Vul, E. Ōsawa, Carbon 2005, 43, 1722 – 1730.
dc.identifier.citedreferenceC. L. Hill, Chem. Rev. 1998, 98, 1 – 2;
dc.identifier.citedreferenceI. V. Kozhevnikov, J. Mol. Catal. A 2007, 262, 86 – 92.
dc.identifier.citedreferenceT. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 1996, 41, 113 – 252.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Micek-Ilnicka, J. Mol. Catal. A 2009, 308, 1 – 14;
dc.identifier.citedreferenceK. Inumaru, T. Ishihara, Y. Kamiya, T. Okuhara, S. Yamanaka, Angew. Chem. Int. Ed. 2007, 46, 7625 – 7628; Angew. Chem. 2007, 119, 7769 – 7772;
dc.identifier.citedreferenceW. Qi, Y. Z. Wang, W. Li, L. X. Wu, Chem. Eur. J. 2010, 16, 1068 – 1078.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. Serp, E. Castillejos, ChemCatChem 2010, 2, 41 – 47;
dc.identifier.citedreferenceD. S. Su, S. Perathoner, G. Centi, Chem. Rev. 2013, 113, 5782 – 5816;
dc.identifier.citedreferenceG. Charron, A. Giusti, S. Mazerat, P. Mialane, A. Gloter, F. Miserque, B. Keita, L. Nadjo, A. Filoramo, E. Riviere, W. Wernsdorfer, V. Huc, J. P. Bourgoin, T. Mallah, Nanoscale 2010, 2, 139 – 144.
dc.identifier.citedreferenceW. Qi, W. Liu, S. Y. Liu, B. S. Zhang, M. X. Gu, L. X. Guo, S. D. Su, ChemCatChem 2014, 6, 2613 – 2620.
dc.identifier.citedreferenceV. L. Kuznetsov, A. L. Chuvilin, Y. V. Butenko, I. Y. Mal′kov, V. M. Titov, Chem. Phys. Lett. 1994, 222, 343 – 348.
dc.identifier.citedreferenceN. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, K. Iimura, J. Appl. Phys. 2002, 92, 2783 – 2788.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.