Show simple item record

2Hâ Tetrakis(3,5â diâ tertâ butyl)phenylporphyrin on a Cu(110) Surface: Roomâ Temperature Selfâ Metalation and Surfaceâ Reconstructionâ Facilitated Selfâ Assembly

dc.contributor.authorZhang, Liang
dc.contributor.authorLepper, Michael
dc.contributor.authorStark, Michael
dc.contributor.authorSchuster, Ralf
dc.contributor.authorLungerich, Dominik
dc.contributor.authorJux, Norbert
dc.contributor.authorSteinrück, Hans‐peter
dc.contributor.authorMarbach, Hubertus
dc.date.accessioned2017-06-16T20:16:08Z
dc.date.available2017-06-16T20:16:08Z
dc.date.issued2016-03-01
dc.identifier.citationZhang, Liang; Lepper, Michael; Stark, Michael; Schuster, Ralf; Lungerich, Dominik; Jux, Norbert; Steinrück, Hans‐peter ; Marbach, Hubertus (2016). "2Hâ Tetrakis(3,5â diâ tertâ butyl)phenylporphyrin on a Cu(110) Surface: Roomâ Temperature Selfâ Metalation and Surfaceâ Reconstructionâ Facilitated Selfâ Assembly." Chemistry â A European Journal 22(10): 3347-3354.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137571
dc.description.abstractThe adsorption behavior of 2Hâ tetrakis(3,5â diâ tertâ butyl)phenylporphyrin (2HTTBPP) on Cu(110) and Cu(110)â (2Ã 1)O surfaces have been investigated by using variableâ temperature scanning tunneling microscopy (STM) under ultrahigh vacuum conditions. On the bare Cu(110) surface, individual 2HTTBPP molecules are observed. These molecules are immobilized on the surface with a particular orientation with respect to the crystallographic directions of the Cu(110) surface and do not form supramolecular aggregates up to full monolayer coverage. In contrast, a chiral supramolecular structure is formed on the Cu(110)â (2Ã 1)O surface, which is stabilized by van der Waals interactions between the tertâ butyl groups of neighboring molecules. These findings are explained by weakened moleculeâ substrate interactions on the Cu(110)â (2Ã 1)O surface relative to the bare Cu(110) surface. By comparison with the corresponding results of Cuâ tetrakis(3,5â diâ tertâ butyl)phenylporphyrin (CuTTBPP) on Cu(110) and Cu(110)â (2Ã 1)O surfaces, we find that the 2HTTBPP molecules can selfâ metalate on both surfaces with copper atoms from the substrate at room temperature (RT). The possible origins of the selfâ metalation reaction at RT are discussed. Finally, peculiar irreversible temperatureâ dependent switching of the intramolecular conformations of the investigated molecules on the Cu(110) surface was observed and interpreted.Role of the substrate: 2Hâ Tetrakis(3,5â diâ tertâ butyl)phenylporphyrin (2HTTBPP) molecules can selfâ metalate with copper atoms from the substrate on both Cu(110) and Cu(110)â (2Ã 1)O surfaces at room temperature (RT; see figure). The (2Ã 1) surface reconstruction of Cu(110) by oxygen atoms also significantly modifies the moleculeâ substrate interaction and facilitates the selfâ assembly of 2HTTBPP molecules at RT.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherscanning tunneling microscopy
dc.subject.otherself-assembly
dc.subject.otherporphyrinoids
dc.subject.otheradsorption
dc.subject.othersurfaces and interfaces
dc.title2Hâ Tetrakis(3,5â diâ tertâ butyl)phenylporphyrin on a Cu(110) Surface: Roomâ Temperature Selfâ Metalation and Surfaceâ Reconstructionâ Facilitated Selfâ Assembly
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137571/1/chem201504214.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137571/2/chem201504214-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.201504214
dc.identifier.sourceChemistry â A European Journal
dc.identifier.citedreferenceK. Comanici, F. Buchner, K. Flechtner, T. Lukasczyk, J. M. Gottfried, H.-P. Steinrück, H. Marbach, Langmuir 2008, 24, 1897 â 1901.
dc.identifier.citedreferenceL. Zhang, M. Lepper, M. Stark, D. Lungerich, N. Jux, W. Hieringer, H.-P. Steinrück, H. Marbach, Phys. Chem. Chem. Phys. 2015, 17, 13066 â 13073.
dc.identifier.citedreferenceJ. Xiao, S. Ditze, M. Chen, F. Buchner, M. Stark, M. Drost, H.-P. Steinrück, J. M. Gottfried, H. Marbach, J. Phys. Chem. C 2012, 116, 12275 â 12282.
dc.identifier.citedreferenceM. Röckert, M. Franke, Q. Tariq, S. Ditze, M. Stark, P. Uffinger, D. Wechsler, U. Singh, J. Xiao, H. Marbach, H.-P. Steinrück, O. Lytken, Chem. Eur. J. 2014, 20, 8948 â 8953.
dc.identifier.citedreferenceK. Diller, F. Klappenberger, F. Allegretti, A. C. Papageorgiou, S. Fischer, A. Wiengarten, S. Joshi, K. Seufert, D. à cija, W. Auwärter, J. V. Barth, J. Chem. Phys. 2013, 138, 154710.
dc.identifier.citedreferenceG. Diâ Santo, S. Blankenburg, C. Castellarin-Cudia, M. Fanetti, P. Borghetti, L. Sangaletti, L. Floreano, A. Verdini, E. Magnano, F. Bondino, C. A. Pignedoli, M. T. Nguyen, R. Gaspari, D. Passerone, A. Goldoni, Chem. Eur. J. 2011, 17, 14354 â 14359.
dc.identifier.citedreferenceW. Auwärter, A. Weber-Bargioni, S. Brink, A. Riemann, A. Schiffrin, M. Ruben, J. V. Barth, Chemphyschem 2007, 8, 250 â 254.
dc.identifier.citedreferenceA. Goldoni, C. A. Pignedoli, G. Diâ Santo, C. Castellarin-Cudia, E. Magnano, F. Bondino, A. Verdini, D. Passerone, ACS Nano 2012, 6, 10800 â 10807.
dc.identifier.citedreferenceR. González-Moreno, A. Garcia-Lekue, A. Arnau, M. Trelka, J. M. Gallego, R. Otero, A. Verdini, C. Sánchez-Sánchez, P. L. deâ Andrés, J. à . Martín-Gago, C. Rogero, J. Phys. Chem. C 2013, 117, 7661 â 7668.
dc.identifier.citedreferenceR. González-Moreno, C. Sánchez-Sánchez, M. Trelka, R. Otero, A. Cossaro, A. Verdini, L. Floreano, M. Ruiz-Bermejo, A. García-Lekue, J. A. n. Martín-Gago, C. Rogero, J. Phys. Chem. C 2011, 115, 6849 â 6854.
dc.identifier.citedreferenceC. Perry, S. Haq, B. Frederick, N. Richardson, Surf. Sci. 1998, 409, 512 â 520.
dc.identifier.citedreferenceW. Auwärter, F. Klappenberger, A. Weber-Bargioni, A. Schiffrin, T. Strunskus, C. Wöll, Y. Pennec, A. Riemann, J. V. Barth, J. Am. Chem. Soc. 2007, 129, 11279 â 11285.
dc.identifier.citedreferenceF. Klappenberger, A. Weber-Bargioni, W. Auwärter, M. Marschall, A. Schiffrin, J. V. Barth, J. Chem. Phys. 2008, 129, 214702.
dc.identifier.citedreferenceR. Otero, F. Hummelink, F. Sato, S. B. Legoas, P. Thostrup, E. Laegsgaard, I. Stensgaard, D. S. Galvao, F. Besenbacher, Nat. Mater. 2004, 3, 779 â 782.
dc.identifier.citedreferenceQ. Sun, C. Zhang, Z. Li, K. Sheng, H. Kong, L. Wang, Y. Pan, Q. Tan, A. Hu, W. Xu, Appl. Phys. Lett. 2013, 103, 013103.
dc.identifier.citedreferenceD. E. Barlow, L. Scudiero, K. Hipps, Langmuir 2004, 20, 4413 â 4421.
dc.identifier.citedreferenceM. Röckert, S. Ditze, M. Stark, J. Xiao, H.-P. Steinrück, H. Marbach, O. Lytken, J. Phys. Chem. C 2013, 117, 1661 â 1667.
dc.identifier.citedreferenceT. E. Shubina, H. Marbach, K. Flechtner, A. Kretschmann, N. Jux, F. Buchner, H.-P. Steinrück, T. Clark, J. M. Gottfried, J. Am. Chem. Soc. 2007, 129, 9476 â 9483.
dc.identifier.citedreferenceJ. M. Gottfried, K. Flechtner, A. Kretschmann, T. Lukasczyk, H.-P. Steinrück, J. Am. Chem. Soc. 2006, 128, 5644 â 5645.
dc.identifier.citedreferenceM. Röckert, M. Franke, Q. Tariq, D. Lungerich, N. Jux, M. Stark, A. Kaftan, S. Ditze, H. Marbach, M. Laurin, J. Libuda, H.-P. Steinrück, O. Lytken, J. Phys. Chem. C 2014, 118, 26729 â 26736.
dc.identifier.citedreferenceP. Rahe, M. Nimmrich, A. Nefedov, M. Naboka, C. Woll, A. Kuhnle, J. Phys. Chem. C 2009, 113, 17471 â 17478.
dc.identifier.citedreferenceW. Auwärter, A. Weber-Bargioni, A. Riemann, A. Schiffrin, O. Gröning, R. Fasel, J. V. Barth, J. Chem. Phys. 2006, 124, 194708.
dc.identifier.citedreferenceK.-H. Ernst, Phys. Status Solidi B 2012, 249, 2057 â 2088.
dc.identifier.citedreferenceI. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, A. M. Baro, Rev. Sci. Instrum. 2007, 78, 013705.
dc.identifier.citedreferenceJ. V. Barth, G. Costantini, K. Kern, Nature 2005, 437, 671 â 679.
dc.identifier.citedreferenceF. Klappenberger, Prog. Surf. Sci. 2014, 89, 1 â 55.
dc.identifier.citedreferenceW. Auwärter, D. à cija, F. Klappenberger, J. V. Barth, Nat. Chem. 2015, 7, 105 â 120.
dc.identifier.citedreferenceL. Bartels, Nat. Chem. 2010, 2, 87 â 95.
dc.identifier.citedreferenceH. Marbach, H.-P. Steinrück, Chem. Commun. 2014, 50, 9034.
dc.identifier.citedreferenceS. Ditze, M. Stark, F. Buchner, A. Aichert, N. Jux, N. Luckas, A. Görling, W. Hieringer, J. Hornegger, H.-P. Steinrück, H. Marbach, J. Am. Chem. Soc. 2014, 136, 1609 â 1616.
dc.identifier.citedreferenceS. Ditze, M. Stark, M. Drost, F. Buchner, H.-P. Steinrück, H. Marbach, Angew. Chem. Int. Ed. 2012, 51, 10898 â 10901.
dc.identifier.citedreferenceJ. Otsuki, Coord. Chem. Rev. 2010, 254, 2311 â 2341.
dc.identifier.citedreferenceJ. M. Gottfried, Surf. Sci. Rep. 2015, 70, 259 â 379.
dc.identifier.citedreferenceH. Marbach, Acc. Chem. Res. 2015, 48, 2649 â 2658.
dc.identifier.citedreferenceJ. K. Gimzewski, C. Joachim, Science 1999, 283, 1683 â 1688.
dc.identifier.citedreferenceT. A. Jung, R. R. Schlittler, J. K. Gimzewski, Nature 1997, 386, 696 â 698.
dc.identifier.citedreferenceF. Buchner, E. Zillner, M. Röckert, S. Gläà el, H.-P. Steinrück, H. Marbach, Chem. Eur. J. 2011, 17, 10226 â 10229.
dc.identifier.citedreferenceM. Stark, S. Ditze, M. Drost, F. Buchner, H.-P. Steinrück, H. Marbach, Langmuir 2013, 29, 4104 â 4110.
dc.identifier.citedreferenceM. Inâ ²tâ Veld, P. Iavicoli, S. Haq, D. B. Amabilino, R. Raval, Chem. Commun. 2008, 1536 â 1538.
dc.identifier.citedreferenceF. Buchner, K. Comanici, N. Jux, H.-P. Steinrück, H. Marbach, J. Phys. Chem. C 2007, 111, 13531 â 13538.
dc.identifier.citedreferenceL. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters, S. Hecht, Nat. Nanotechnol. 2007, 2, 687 â 691.
dc.identifier.citedreferenceF. Buchner, J. Xiao, E. Zillner, M. Chen, M. Röckert, S. Ditze, M. Stark, H.-P. Steinrück, J. M. Gottfried, H. Marbach, J. Phys. Chem. C 2011, 115, 24172 â 24177.
dc.identifier.citedreferenceK. Diller, F. Klappenberger, M. Marschall, K. Hermann, A. Nefedov, C. Wöll, J. V. Barth, J. Chem. Phys. 2012, 136, 014705.
dc.identifier.citedreferenceF. Buchner, I. Kellner, W. Hieringer, A. Görling, H.-P. Steinrück, H. Marbach, Phys. Chem. Chem. Phys. 2010, 12, 13082 â 13090.
dc.identifier.citedreferenceD. Chylarecka, C. Wackerlin, T. K. Kim, K. Müller, F. Nolting, A. Kleibert, N. Ballav, T. A. Jung, J. Phys. Chem. Lett. 2010, 1, 1408 â 1413.
dc.identifier.citedreferenceJ. Nowakowski, C. Wäckerlin, J. Girovsky, D. Siewert, T. A. Jung, N. Ballav, Chem. Commun. 2013, 49, 2347.
dc.identifier.citedreferenceS. Ditze, M. Röckert, F. Buchner, E. Zillner, M. Stark, H.-P. Steinrück, H. Marbach, Nanotechnology 2013, 24, 115305.
dc.identifier.citedreferenceT. Suzuki, T. Lutz, D. Payer, N. Lin, S. L. Tait, G. Costantini, K. Kern, Phys. Chem. Chem. Phys. 2009, 11, 6498 â 6504.
dc.identifier.citedreferenceM. Elâ Garah, J. Lipton-Duffin, J. M. MacLeod, R. Gutzler, F. Palmino, V. Luzet, F. Cherioux, F. Rosei, Chem. Asian J. 2013, 8, 1813 â 1817.
dc.identifier.citedreferenceM. Oehzelt, L. Grill, S. Berkebile, G. Koller, F. P. Netzer, M. G. Ramsey, Chemphyschem 2007, 8, 1707 â 1712.
dc.identifier.citedreferenceM. Oehzelt, S. Berkebile, G. Koller, J. Ivanco, S. Surnev, M. G. Ramsey, Surf. Sci. 2009, 603, 412 â 418.
dc.identifier.citedreferenceM. Wagner, P. Puschnig, S. Berkebile, F. P. Netzer, M. G. Ramsey, Phys. Chem. Chem. Phys. 2013, 15, 4691 â 4698.
dc.identifier.citedreferenceL. Smykalla, P. Shukrynau, D. R. T. Zahn, M. Hietschold, J. Phys. Chem. A 2015, 119, 17228 â 17234.
dc.identifier.citedreferenceT. Yokoyama, Y. Tomita, J. Chem. Phys. 2008, 129, 164704.
dc.identifier.citedreferenceY. Kuk, F. Chua, P. Silverman, J. Meyer, Phys. Rev. B 1990, 41, 12393.
dc.identifier.citedreferenceH. Dürr, R. Schneider, T. Fauster, Phys. Rev. B 1991, 43, 1802.
dc.identifier.citedreferenceZ. X. Wang, F. H. Tian, J. Phys. Chem. B 2003, 107, 6153 â 6161.
dc.identifier.citedreferenceM. Stark, S. Ditze, M. Lepper, L. Zhang, H. Schlott, F. Buchner, M. Röckert, M. Chen, O. Lytken, H.-P. Steinrück, Chem. Commun. 2014, 50, 10225 â 10228.
dc.identifier.citedreferenceT. Yokoyama, S. Yokoyama, T. Kamikado, Y. Okuno, S. Mashiko, Nature 2001, 413, 619 â 621.
dc.identifier.citedreferenceT. Yokoyama, Y. Tomita, J. Chem. Phys. 2012, 137, 244701.
dc.identifier.citedreferenceT. Wölfle, A. Görling, W. Hieringer, Phys. Chem. Chem. Phys. 2008, 10, 5739 â 5742.
dc.identifier.citedreferenceT. Jung, R. Schlittler, J. Gimzewski, H. Tang, C. Joachim, Science 1996, 271-274, 181 â 183.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.