Show simple item record

CXCL10 and ILâ 6: Markers of two different forms of intraâ amniotic inflammation in preterm labor

dc.contributor.authorRomero, Roberto
dc.contributor.authorChaemsaithong, Piya
dc.contributor.authorChaiyasit, Noppadol
dc.contributor.authorDocheva, Nikolina
dc.contributor.authorDong, Zhong
dc.contributor.authorKim, Chong Jai
dc.contributor.authorKim, Yeon Mee
dc.contributor.authorKim, Jung‐sun
dc.contributor.authorQureshi, Faisal
dc.contributor.authorJacques, Suzanne M.
dc.contributor.authorYoon, Bo Hyun
dc.contributor.authorChaiworapongsa, Tinnakorn
dc.contributor.authorYeo, Lami
dc.contributor.authorHassan, Sonia S.
dc.contributor.authorErez, Offer
dc.contributor.authorKorzeniewski, Steven J.
dc.date.accessioned2017-06-16T20:16:17Z
dc.date.available2018-08-28T15:28:59Zen
dc.date.issued2017-07
dc.identifier.citationRomero, Roberto; Chaemsaithong, Piya; Chaiyasit, Noppadol; Docheva, Nikolina; Dong, Zhong; Kim, Chong Jai; Kim, Yeon Mee; Kim, Jung‐sun ; Qureshi, Faisal; Jacques, Suzanne M.; Yoon, Bo Hyun; Chaiworapongsa, Tinnakorn; Yeo, Lami; Hassan, Sonia S.; Erez, Offer; Korzeniewski, Steven J. (2017). "CXCL10 and ILâ 6: Markers of two different forms of intraâ amniotic inflammation in preterm labor." American Journal of Reproductive Immunology 78(1): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/137580
dc.publisherWiley Periodicals, Inc.
dc.publisherChurchill Livingstone
dc.subject.otherallograft
dc.subject.otheramniocentesis
dc.subject.otherbiomarker
dc.subject.otherchorioamnionitis
dc.subject.otherchronic inflammation
dc.subject.othercytokine
dc.subject.othermaternal antiâ fetal rejection
dc.titleCXCL10 and ILâ 6: Markers of two different forms of intraâ amniotic inflammation in preterm labor
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137580/1/aji12685_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137580/2/aji12685.pdf
dc.identifier.doi10.1111/aji.12685
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceKhong TY, Bendon RW, Qureshi F, et al. Chronic deciduitis in the placental basal plate: definition and interobserver reliability. Hum Pathol. 2000; 31: 292 â 295.
dc.identifier.citedreferenceDudley DJ, Hunter C, Mitchell MD, Varner MW. Elevations of amniotic fluid macrophage inflammatory proteinâ 1 alpha concentrations in women during term and preterm labor. Obstet Gynecol. 1996; 87: 94 â 98.
dc.identifier.citedreferenceKusanovic JP, Romero R, Chaiworapongsa T, et al. Amniotic fluid sTREMâ 1 in normal pregnancy, spontaneous parturition at term and preterm, and intraâ amniotic infection/inflammation. J Matern Fetal Neonatal Med. 2010; 23: 34 â 47.
dc.identifier.citedreferenceWei SQ, Fraser W, Luo ZC. Inflammatory cytokines and spontaneous preterm birth in asymptomatic women: a systematic review. Obstet Gynecol. 2010; 116: 393 â 401.
dc.identifier.citedreferenceCondeâ Agudelo A, Papageorghiou AT, Kennedy SH, Villar J. Novel biomarkers for the prediction of the spontaneous preterm birth phenotype: a systematic review and metaâ analysis. BJOG. 2011; 118: 1042 â 1054.
dc.identifier.citedreferenceRomero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015; 213: 836.e1 â 836.e18.
dc.identifier.citedreferenceRotondi M, Rosati A, Buonamano A, et al. High pretransplant serum levels of CXCL10/IPâ 10 are related to increased risk of renal allograft failure. Am J Transplant. 2004; 4: 1466 â 1474.
dc.identifier.citedreferenceHoffman SA, Wang L, Shah CV, et al. Plasma cytokines and chemokines in primary graft dysfunction postâ lung transplantation. Am J Transplant. 2009; 9: 389 â 396.
dc.identifier.citedreferenceMatz M, Beyer J, Wunsch D, et al. Early postâ transplant urinary IPâ 10 expression after kidney transplantation is predictive of shortâ and longâ term graft function. Kidney Int. 2006; 69: 1683 â 1690.
dc.identifier.citedreferenceSuthanthiran M, Schwartz JE, Ding R, et al. Urinaryâ cell mRNA profile and acute cellular rejection in kidney allografts. N Engl J Med. 2013; 369: 20 â 31.
dc.identifier.citedreferenceAgostini C, Calabrese F, Rea F, et al. Cxcr3 and its ligand CXCL10 are expressed by inflammatory cells infiltrating lung allografts and mediate chemotaxis of T cells at sites of rejection. Am J Pathol. 2001; 158: 1703 â 1711.
dc.identifier.citedreferenceMelter M, Exeni A, Reinders ME, et al. Expression of the chemokine receptor CXCR3 and its ligand IPâ 10 during human cardiac allograft rejection. Circulation. 2001; 104: 2558 â 2564.
dc.identifier.citedreferencePanzer U, Reinking RR, Steinmetz OM, et al. CXCR3 and CCR5 positive Tâ cell recruitment in acute human renal allograft rejection. Transplantation. 2004; 78: 1341 â 1350.
dc.identifier.citedreferenceSegerer S, Cui Y, Eitner F, et al. Expression of chemokines and chemokine receptors during human renal transplant rejection. Am J Kidney Dis. 2001; 37: 518 â 531.
dc.identifier.citedreferenceTatapudi RR, Muthukumar T, Dadhania D, et al. Noninvasive detection of renal allograft inflammation by measurements of mRNA for IPâ 10 and CXCR3 in urine. Kidney Int. 2004; 65: 2390 â 2397.
dc.identifier.citedreferenceLazzeri E, Rotondi M, Mazzinghi B, et al. High CXCL10 expression in rejected kidneys and predictive role of pretransplant serum CXCL10 for acute rejection and chronic allograft nephropathy. Transplantation. 2005; 79: 1215 â 1220.
dc.identifier.citedreferenceSegerer S, Bohmig GA, Exner M, Kerjaschki D, Regele H, Schlondorff D. Role of CXCR3 in cellular but not humoral renal allograft rejection. Transpl Int. 2005; 18: 676 â 680.
dc.identifier.citedreferenceSchaub S, Nickerson P, Rush D, et al. Urinary CXCL9 and CXCL10 levels correlate with the extent of subclinical tubulitis. Am J Transplant. 2009; 9: 1347 â 1353.
dc.identifier.citedreferenceLo DJ, Weaver TA, Kleiner DE, et al. Chemokines and their receptors in human renal allotransplantation. Transplantation. 2011; 91: 70 â 77.
dc.identifier.citedreferenceFahmy NM, Yamani MH, Starling RC, et al. Chemokine and chemokine receptor gene expression indicates acute rejection of human cardiac transplants. Transplantation. 2003; 75: 72 â 78.
dc.identifier.citedreferenceFahmy NM, Yamani MH, Starling RC, et al. Chemokine and receptorâ gene expression during early and late acute rejection episodes in human cardiac allografts. Transplantation. 2003; 75: 2044 â 2047.
dc.identifier.citedreferenceCrescioli C, Buonamano A, Scolletta S, et al. Predictive role of pretransplant serum CXCL10 for cardiac acute rejection. Transplantation. 2009; 87: 249 â 255.
dc.identifier.citedreferenceZhao DX, Hu Y, Miller GG, Luster AD, Mitchell RN, Libby P. Differential expression of the IFNâ gammaâ inducible CXCR3â binding chemokines, IFNâ inducible protein 10, monokine induced by IFN, and IFNâ inducible T cell alpha chemoattractant in human cardiac allografts: association with cardiac allograft vasculopathy and acute rejection. J Immunol. 2002; 169: 1556 â 1560.
dc.identifier.citedreferenceBurns WR, Wang Y, Tang PC, et al. Recruitment of CXCR3+ and CCR5+ T cells and production of interferonâ gammaâ inducible chemokines in rejecting human arteries. Am J Transplant. 2005; 5: 1226 â 1236.
dc.identifier.citedreferenceShahzad K, Cadeiras M, Memon S, et al. Gene expression signatures of peripheral blood mononuclear cells during the early postâ transplant period in patients developing cardiac allograft vasculopathy. J Transplant. 2010; 2010: 719696.
dc.identifier.citedreferenceOgge G, Romero R, Lee DC, et al. Chronic chorioamnionitis displays distinct alterations of the amniotic fluid proteome. J Pathol. 2011; 223: 553 â 565.
dc.identifier.citedreferenceAlok A, Mukhopadhyay D, Karande AA. Glycodelin A, an immunomodulatory protein in the endometrium, inhibits proliferation and induces apoptosis in monocytic cells. Int J Biochem Cell Biol. 2009; 41: 1138 â 1147.
dc.identifier.citedreferenceCuenca AG, Wynn JL, Kellyâ Scumpia KM, et al. Critical role for CXC ligand 10/CXC receptor 3 signaling in the murine neonatal response to sepsis. Infect Immun. 2011; 79: 2746 â 2754.
dc.identifier.citedreferenceGroom JR, Luster AD. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol. 2011; 89: 207 â 215.
dc.identifier.citedreferenceChan T, Gu F. Early diagnosis of sepsis using serum biomarkers. Expert Rev Mol Diagn. 2011; 11: 487 â 496.
dc.identifier.citedreferenceLiu M, Guo S, Hibbert JM, et al. CXCL10/IPâ 10 in infectious diseases pathogenesis and potential therapeutic implications. Cytokine Growth Factor Rev. 2011; 22: 121 â 130.
dc.identifier.citedreferenceHerzig DS, Luan L, Bohannon JK, Toliverâ Kinsky TE, Guo Y, Sherwood ER. The role of CXCL10 in the pathogenesis of experimental septic shock. Crit Care. 2014; 18: R113.
dc.identifier.citedreferenceHerzig DS, Driver BR, Fang G, Toliverâ Kinsky TE, Shute EN, Sherwood ER. Regulation of lymphocyte trafficking by CXC chemokine receptor 3 during septic shock. Am J Respir Crit Care Med. 2012; 185: 291 â 300.
dc.identifier.citedreferenceHerzig DS, Guo Y, Fang G, Toliverâ Kinsky TE, Sherwood ER. Therapeutic efficacy of CXCR3 blockade in an experimental model of severe sepsis. Crit Care. 2012; 16: R168.
dc.identifier.citedreferenceNg PC, Li K, Chui KM, et al. IPâ 10 is an early diagnostic marker for identification of lateâ onset bacterial infection in preterm infants. Pediatr Res. 2007; 61: 93 â 98.
dc.identifier.citedreferencePunyadeera C, Schneider EM, Schaffer D, et al. A biomarker panel to discriminate between systemic inflammatory response syndrome and sepsis and sepsis severity. J Emerg Trauma Shock. 2010; 3: 26 â 35.
dc.identifier.citedreferenceChen HL, Hung CH, Tseng HI, Yang RC. Plasma IPâ 10 as a predictor of serious bacterial infection in infants less than 4 months of age. J Trop Pediatr. 2011; 57: 145 â 151.
dc.identifier.citedreferenceWilkins I, Creasy RK. Preterm labor. Clin Obstet Gynecol. 1990; 33: 502 â 514.
dc.identifier.citedreferenceRomero R, Mazor M, Munoz H, Gomez R, Galasso M, Sherer DM. The preterm labor syndrome. Ann N Y Acad Sci. 1994; 734: 414 â 429.
dc.identifier.citedreferenceMazor M, Chaim W, Romero R. [Preterm labor syndrome]. Harefuah. 1995; 128: 111 â 116.
dc.identifier.citedreferenceRomero R, Gomez R, Mazor M, Ghezzi F, Yoon BH. The preterm labor syndrome. In: Elder MG, Romero R, Lamont RF, eds. Preterm Labor. New York: Churchill Livingstone; 1997: 29 â 49.
dc.identifier.citedreferenceDudley DJ. Preâ term labor: an intraâ uterine inflammatory response syndrome? J Reprod Immunol. 1997; 36: 93 â 109.
dc.identifier.citedreferenceRomero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG. 2006; 113 ( Suppl 3 ): 17 â 42.
dc.identifier.citedreferenceVillar J, Papageorghiou AT, Knight HE, et al. The preterm birth syndrome: a prototype phenotypic classification. Am J Obstet Gynecol. 2012; 206: 119 â 123.
dc.identifier.citedreferenceKramer MS, Papageorghiou A, Culhane J, et al. Challenges in defining and classifying the preterm birth syndrome. Am J Obstet Gynecol. 2012; 206: 108 â 112.
dc.identifier.citedreferenceGoldenberg RL, Gravett MG, Iams J, et al. The preterm birth syndrome: issues to consider in creating a classification system. Am J Obstet Gynecol. 2012; 206: 113 â 118.
dc.identifier.citedreferenceBlencowe H, Cousens S, Chou D, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013; 10 ( Suppl 1 ): S2.
dc.identifier.citedreferenceGuimaraes Filho HA, Araujo Junior E, Pires CR, Nardozza LM, Moron AF. Short cervix syndrome: current knowledge from etiology to the control. Arch Gynecol Obstet. 2013; 287: 621 â 628.
dc.identifier.citedreferenceRomero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014; 345: 760 â 765.
dc.identifier.citedreferenceFuzzi B, Rizzo R, Criscuoli L, et al. HLAâ G expression in early embryos is a fundamental prerequisite for the obtainment of pregnancy. Eur J Immunol. 2002; 32: 311 â 315.
dc.identifier.citedreferenceKim MJ, Romero R, Kim CJ, et al. Villitis of unknown etiology is associated with a distinct pattern of chemokine upâ regulation in the fetoâ maternal and placental compartments: implications for conjoint maternal allograft rejection and maternal antiâ fetal graftâ versusâ host disease. J Immunol. 2009; 182: 3919 â 3927.
dc.identifier.citedreferenceKim CJ, Romero R, Kusanovic JP, et al. The frequency, clinical significance, and pathological features of chronic chorioamnionitis: a lesion associated with spontaneous preterm birth. Mod Pathol. 2010; 23: 1000 â 1011.
dc.identifier.citedreferenceLee J, Romero R, Xu Y, et al. A signature of maternal antiâ fetal rejection in spontaneous preterm birth: chronic chorioamnionitis, antiâ human leukocyte antigen antibodies, and C4d. PLoS One. 2011; 6: e16806.
dc.identifier.citedreferenceLee J, Romero R, Dong Z, et al. Unexplained fetal death has a biological signature of maternal antiâ fetal rejection: chronic chorioamnionitis and alloimmune antiâ human leucocyte antigen antibodies. Histopathology. 2011; 59: 928 â 938.
dc.identifier.citedreferenceLee J, Romero R, Xu Y, et al. Maternal HLA panelâ reactive antibodies in early gestation positively correlate with chronic chorioamnionitis: evidence in support of the chronic nature of maternal antiâ fetal rejection. Am J Reprod Immunol. 2011; 66: 510 â 526.
dc.identifier.citedreferenceRomero R, Whitten A, Korzeniewski SJ, et al. Maternal floor infarction/massive perivillous fibrin deposition: a manifestation of maternal antifetal rejection? Am J Reprod Immunol. 2013; 70: 285 â 298.
dc.identifier.citedreferenceLee J, Romero R, Xu Y, et al. Detection of antiâ HLA antibodies in maternal blood in the second trimester to identify patients at risk of antibodyâ mediated maternal antiâ fetal rejection and spontaneous preterm delivery. Am J Reprod Immunol. 2013; 70: 162 â 175.
dc.identifier.citedreferenceLee J, Romero R, Chaiworapongsa T, et al. Characterization of the fetal blood transcriptome and proteome in maternal antiâ fetal rejection: evidence of a distinct and novel type of human fetal systemic inflammatory response. Am J Reprod Immunol. 2013; 70: 265 â 284.
dc.identifier.citedreferenceLee J, Kim JS, Park JW, et al. Chronic chorioamnionitis is the most common placental lesion in late preterm birth. Placenta. 2013; 34: 681 â 689.
dc.identifier.citedreferenceLee KA, Kim YW, Shim JY, et al. Distinct patterns of C4d immunoreactivity in placentas with villitis of unknown etiology, cytomegaloviral placentitis, and infarct. Placenta. 2013; 34: 432 â 435.
dc.identifier.citedreferenceRudzinski E, Gilroy M, Newbill C, Morgan T. Positive C4d immunostaining of placental villous syncytiotrophoblasts supports hostâ versusâ graft rejection in villitis of unknown etiology. Pediatr Dev Pathol. 2013; 16: 7 â 13.
dc.identifier.citedreferenceLannaman K, Romero R, Chaemsaithong P, et al. Abstract No. 497 Fetal death: an extreme form of maternal antiâ fetal rejection. Am J Obstet Gynecol. 2015; 212: S251.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Kim J. Chronic inflammation of the placenta: definition, classification, pathogenesis, and clinical significance. Am J Obstet Gynecol. 2015; 213: S53 â S69.
dc.identifier.citedreferenceClark GF. The role of glycans in immune evasion: the human fetoembryonic defence system hypothesis revisited. Mol Hum Reprod. 2014; 20: 185 â 199.
dc.identifier.citedreferenceJiang TT, Chaturvedi V, Ertelt JM, et al. Regulatory T cells: new keys for further unlocking the enigma of fetal tolerance and pregnancy complications. J Immunol. 2014; 192: 4949 â 4956.
dc.identifier.citedreferenceLee YC, Lin SJ. Natural killer cell in the developing life. J Perinat Med. 2015; 43: 11 â 17.
dc.identifier.citedreferenceSchefold JC, Porz L, Uebe B, et al. Diminished HLAâ DR expression on monocyte and dendritic cell subsets indicating impairment of cellular immunity in preâ term neonates: a prospective observational analysis. J Perinat Med. 2015; 43: 609 â 618.
dc.identifier.citedreferenceErlebacher A. Why isn’t the fetus rejected? Curr Opin Immunol. 2001; 13: 590 â 593.
dc.identifier.citedreferenceKoch CA, Platt JL. Natural mechanisms for evading graft rejection: the fetus as an allograft. Springer Semin Immunopathol. 2003; 25: 95 â 117.
dc.identifier.citedreferenceTrowsdale J, Betz AG. Mother’s little helpers: mechanisms of maternalâ fetal tolerance. Nat Immunol. 2006; 7: 241 â 246.
dc.identifier.citedreferenceLeslie M. Immunology. Fetal immune system hushes attacks on maternal cells. Science. 2008; 322: 1450 â 1451.
dc.identifier.citedreferenceMold JE, Michaelsson J, Burt TD, et al. Maternal alloantigens promote the development of tolerogenic fetal regulatory T cells in utero. Science. 2008; 322: 1562 â 1565.
dc.identifier.citedreferenceBurlingham WJ. A lesson in toleranceâ maternal instruction to fetal cells. N Engl J Med. 2009; 360: 1355 â 1357.
dc.identifier.citedreferenceChaouat G, Petitbarat M, Dubanchet S, Rahmati M, Ledee N. Tolerance to the foetal allograft? Am J Reprod Immunol. 2010; 63: 624 â 636.
dc.identifier.citedreferenceBluestone JA. Mechanisms of tolerance. Immunol Rev. 2011; 241: 5 â 19.
dc.identifier.citedreferenceRowe JH, Ertelt JM, Xin L, Way SS. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature. 2012; 490: 102 â 106.
dc.identifier.citedreferenceBetz AG. Immunology: tolerating pregnancy. Nature. 2012; 490: 47 â 48.
dc.identifier.citedreferenceWilliams Z. Inducing tolerance to pregnancy. N Engl J Med. 2012; 367: 1159 â 1161.
dc.identifier.citedreferenceErlebacher A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat Rev Immunol. 2013; 13: 23 â 33.
dc.identifier.citedreferenceLe Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation. 2002; 73: 1373 â 1381.
dc.identifier.citedreferenceColvin RB, Smith RN. Antibodyâ mediated organâ allograft rejection. Nat Rev Immunol. 2005; 5: 807 â 817.
dc.identifier.citedreferenceAlegre ML, Florquin S, Goldman M. Cellular mechanisms underlying acute graft rejection: time for reassessment. Curr Opin Immunol. 2007; 19: 563 â 568.
dc.identifier.citedreferenceKim IK, Bedi DS, Denecke C, Ge X, Tullius SG. Impact of innate and adaptive immunity on rejection and tolerance. Transplantation. 2008; 86: 889 â 894.
dc.identifier.citedreferenceWood KJ, Goto R. Mechanisms of rejection: current perspectives. Transplantation. 2012; 93: 1 â 10.
dc.identifier.citedreferenceAli JM, Bolton EM, Bradley JA, Pettigrew GJ. Allorecognition pathways in transplant rejection and tolerance. Transplantation. 2013; 96: 681 â 688.
dc.identifier.citedreferenceKrensky AM. Immunologic tolerance. Pediatr Nephrol. 2001; 16: 675 â 679.
dc.identifier.citedreferenceSacks G, Sargent I, Redman C. An innate view of human pregnancy. Immunol Today. 1999; 20: 114 â 118.
dc.identifier.citedreferenceSzekeresâ Bartho J. Immunological relationship between the mother and the fetus. Int Rev Immunol. 2002; 21: 471 â 495.
dc.identifier.citedreferenceAluvihare VR, Kallikourdis M, Betz AG. Regulatory T cells mediate maternal tolerance to the fetus. Nat Immunol. 2004; 5: 266 â 271.
dc.identifier.citedreferenceErlebacher A. Immunology of the maternalâ fetal interface. Annu Rev Immunol. 2013; 31: 387 â 411.
dc.identifier.citedreferenceNancy P, Tagliani E, Tay CS, Asp P, Levy DE, Erlebacher A. Chemokine gene silencing in decidual stromal cells limits T cell access to the maternalâ fetal interface. Science. 2012; 336: 1317 â 1321.
dc.identifier.citedreferenceSomerset DA, Zheng Y, Kilby MD, Sansom DM, Drayson MT. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory Tâ cell subset. Immunology. 2004; 112: 38 â 43.
dc.identifier.citedreferenceSasaki Y, Sakai M, Miyazaki S, Higuma S, Shiozaki A, Saito S. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol Hum Reprod. 2004; 10: 347 â 353.
dc.identifier.citedreferenceZenclussen AC, Gerlof K, Zenclussen ML, et al. Abnormal Tâ cell reactivity against paternal antigens in spontaneous abortion: adoptive transfer of pregnancyâ induced CD4+CD25+ T regulatory cells prevents fetal rejection in a murine abortion model. Am J Pathol. 2005; 166: 811 â 822.
dc.identifier.citedreferenceLee JH, Ulrich B, Cho J, Park J, Kim CH. Progesterone promotes differentiation of human cord blood fetal T cells into T regulatory cells but suppresses their differentiation into Th17 cells. J Immunol. 2011; 187: 1778 â 1787.
dc.identifier.citedreferenceRamhorst R, Fraccaroli L, Aldo P, et al. Modulation and recruitment of inducible regulatory T cells by first trimester trophoblast cells. Am J Reprod Immunol. 2012; 67: 17 â 27.
dc.identifier.citedreferenceQuinn KH, Parast MM. Decidual regulatory T cells in placental pathology and pregnancy complications. Am J Reprod Immunol. 2013; 69: 533 â 538.
dc.identifier.citedreferenceWilczynski JR, Kalinka J, Radwan M. The role of Tâ regulatory cells in pregnancy and cancer. Front Biosci. 2008; 13: 2275 â 2289.
dc.identifier.citedreferenceSchumacher A, Zenclussen AC. Regulatory T cells: regulators of life. Am J Reprod Immunol. 2014; 72: 158 â 170.
dc.identifier.citedreferenceCollier A, Cook H, Loewendorf A, Yesayan M, Kahn D. Abstract No. 438 Disruption of maternal tolerance during pregnancy leads to Treg repopulation of the antigenic UPI. Am J Obstet Gynecol. 2015; 212: S226 â S227.
dc.identifier.citedreferenceSaifi B, Aflatoonian R, Tajik N, et al. T regulatory markers expression in unexplained recurrent spontaneous abortion. J Matern Fetal Neonatal Med. 2016; 29: 1175 â 1180.
dc.identifier.citedreferenceKovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLAâ G, expressed in human trophoblasts. Science. 1990; 248: 220 â 223.
dc.identifier.citedreferenceMcMaster MT, Librach CL, Zhou Y, et al. Human placental HLAâ G expression is restricted to differentiated cytotrophoblasts. J Immunol. 1995; 154: 3771 â 3778.
dc.identifier.citedreferenceIshitani A, Sageshima N, Lee N, et al. Protein expression and peptide binding suggest unique and interacting functional roles for HLAâ E, F, and G in maternalâ placental immune recognition. J Immunol. 2003; 171: 1376 â 1384.
dc.identifier.citedreferenceHunt JS, Petroff MG, McIntire RH, Ober C. HLAâ G and immune tolerance in pregnancy. FASEB J. 2005; 19: 681 â 693.
dc.identifier.citedreferenceLarsen MH, Hviid TV. Human leukocyte antigenâ G polymorphism in relation to expression, function, and disease. Hum Immunol. 2009; 70: 1026 â 1034.
dc.identifier.citedreferenceRitsick DR, Bommer C, Braverman J. Abstract: The role of fetomaternal MHC class II histoincompatibility in regulating tolerance of the semiâ allogenic fetus. Am J Reprod Immunol. 2014; 71: 37 â 38.
dc.identifier.citedreferenceMunn DH, Zhou M, Attwood JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998; 281: 1191 â 1193.
dc.identifier.citedreferenceKudo Y, Boyd CA. Human placental indoleamine 2,3â dioxygenase: cellular localization and characterization of an enzyme preventing fetal rejection. Biochem Biophys Acta. 2000; 1500: 119 â 124.
dc.identifier.citedreferenceMellor AL, Sivakumar J, Chandler P, et al. Prevention of T cellâ driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nat Immunol. 2001; 2: 64 â 68.
dc.identifier.citedreferenceMellor AL, Chandler P, Lee GK, et al. Indoleamine 2,3â dioxygenase, immunosuppression and pregnancy. J Reprod Immunol. 2002; 57: 143 â 150.
dc.identifier.citedreferenceKudo Y. The role of placental indoleamine 2,3â dioxygenase in human pregnancy. Obstet Gynecol Sci. 2013; 56: 209 â 216.
dc.identifier.citedreferenceHunt JS, Vassmer D, Ferguson TA, Miller L. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J Immunol. 1997; 158: 4122 â 4128.
dc.identifier.citedreferenceUckan D, Steele A, Cherry, et al. Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion. Mol Hum Reprod. 1997; 3: 655 â 662.
dc.identifier.citedreferenceHolmes CH, Simpson KL, Wainwright SD, et al. Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J Immunol. 1990; 144: 3099 â 3105.
dc.identifier.citedreferenceHsi BL, Hunt JS, Atkinson JP. Differential expression of complement regulatory proteins on subpopulations of human trophoblast cells. J Reprod Immunol. 1991; 19: 209 â 223.
dc.identifier.citedreferenceAltemani AM, Norato D, Baumel C. Immunological studies in placentas with villitis of unknown etiology: complement components and immunoglobulins in chorionic villi. J Perinat Med. 1992; 20: 129 â 134.
dc.identifier.citedreferenceHolmes CH, Simpson KL, Okada H, et al. Complement regulatory proteins at the fetoâ maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur J Immunol. 1992; 22: 1579 â 1585.
dc.identifier.citedreferenceTedesco F, Narchi G, Radillo O, Meri S, Ferrone S, Betterle C. Susceptibility of human trophoblast to killing by human complement and the role of the complement regulatory proteins. J Immunol. 1993; 151: 1562 â 1570.
dc.identifier.citedreferenceXu C, Mao D, Holers VM, Palanca B, Cheng AM, Molina H. A critical role for murine complement regulator crry in fetomaternal tolerance. Science. 2000; 287: 498 â 501.
dc.identifier.citedreferenceRichani K, Romero R, Soto E, et al. Unexplained intrauterine fetal death is accompanied by activation of complement. J Perinat Med. 2005; 33: 296 â 305.
dc.identifier.citedreferenceSoto E, Romero R, Richani K, et al. Anaphylatoxins in preterm and term labor. J Perinat Med. 2005; 33: 306 â 313.
dc.identifier.citedreferenceGirardi G, Bulla R, Salmon JE, Tedesco F. The complement system in the pathophysiology of pregnancy. Mol Immunol. 2006; 43: 68 â 77.
dc.identifier.citedreferenceGirardi G. Complement inhibition keeps mothers calm and avoids fetal rejection. Immunol Invest. 2008; 37: 645 â 659.
dc.identifier.citedreferenceMittal P, Romero R, Tarca AL, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010; 38: 617 â 643.
dc.identifier.citedreferenceChaiworapongsa T, Romero R, Whitten A, et al. Differences and similarities in the transcriptional profile of peripheral whole blood in early and lateâ onset preeclampsia: insights into the molecular basis of the phenotype of preeclampsia a. J Perinat Med. 2013; 41: 485 â 504.
dc.identifier.citedreferenceMadan I, Than NG, Romero R, et al. The peripheral wholeâ blood transcriptome of acute pyelonephritis in human pregnancy a. J Perinat Med. 2014; 42: 31 â 53.
dc.identifier.citedreferenceGuleria I, Khosroshahi A, Ansari MJ, et al. A critical role for the programmed death ligand 1 in fetomaternal tolerance. J Exp Med. 2005; 202: 231 â 237.
dc.identifier.citedreferenceHabicht A, Dada S, Jurewicz M, et al. A link between PDL1 and T regulatory cells in fetomaternal tolerance. J Immunol. 2007; 179: 5211 â 5219.
dc.identifier.citedreferenceD’Addio F, Riella LV, Mfarrej BG, et al. The link between the PDL1 costimulatory pathway and Th17 in fetomaternal tolerance. J Immunol. 2011; 187: 4530 â 4541.
dc.identifier.citedreferenceXin L, Ertelt JM, Rowe JH, et al. Cutting edge: committed Th1 CD4+ T cell differentiation blocks pregnancyâ induced Foxp3 expression with antigenâ specific fetal loss. J Immunol. 2014; 192: 2970 â 2974.
dc.identifier.citedreferenceKinder JM, Jiang TT, Ertelt JM, et al. Crossâ generational reproductive fitness enforced by microchimeric maternal cells. Cell. 2015; 162: 505 â 515.
dc.identifier.citedreferencePrabhuDas M, Bonney E, Caron K, et al. Immune mechanisms at the maternalâ fetal interface: perspectives and challenges. Nat Immunol. 2015; 16: 328 â 334.
dc.identifier.citedreferenceRomagnani P, Lasagni L, Annunziato F, Serio M, Romagnani S. CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends Immunol. 2004; 25: 201 â 209.
dc.identifier.citedreferenceLazzeri E, Romagnani P. CXCR3â binding chemokines: novel multifunctional therapeutic targets. Curr Drug Targets Immune Endocr Metabol Disord. 2005; 5: 109 â 118.
dc.identifier.citedreferenceTan J, Zhou G. Chemokine receptors and transplantation. Cell Mol Immunol. 2005; 2: 343 â 349.
dc.identifier.citedreferenceRomagnani P. From basic science to clinical practice: use of cytokines and chemokines as therapeutic targets in renal diseases. J Nephrol. 2005; 18: 229 â 233.
dc.identifier.citedreferenceRomagnani P, Crescioli C. CXCL10: a candidate biomarker in transplantation. Clin Chim Acta. 2012; 413: 1364 â 1373.
dc.identifier.citedreferenceZhang Q, Liu YF, Su ZX, Shi LP, Chen YH. Serum fractalkine and interferonâ gamma inducible proteinâ 10 concentrations are early detection markers for acute renal allograft rejection. Transplant Proc. 2014; 46: 1420 â 1425.
dc.identifier.citedreferenceKim YM, Chaemsaithong P, Romero R, et al. Placental lesions associated with acute atherosis. J Matern Fetal Neonatal Med. 2015; 28: 1554 â 1562.
dc.identifier.citedreferenceGomezâ Lopez N, Hernandezâ Santiago S, Lobb AP, Olson DM, Vadilloâ Ortega F. Normal and premature rupture of fetal membranes at term delivery differ in regional chemotactic activity and related chemokine/cytokine production. Reprod Sci. 2013; 20: 276 â 284.
dc.identifier.citedreferenceGong X, Chen Z, Liu Y, Lu Q, Jin Z. Gene expression profiling of the paracrine effects of uterine natural killer cells on human endometrial epithelial cells. Int J Endocrinol. 2014; 2014: 393707.
dc.identifier.citedreferenceRomero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990; 85: 1392 â 1400.
dc.identifier.citedreferenceRomero R, Sepulveda W, Kenney JS, Archer LE, Allison AC, Sehgal PB. Interleukin 6 determination in the detection of microbial invasion of the amniotic cavity. Ciba Found Symp. 1992; 167: 205 â 220; discussion 220â 203.
dc.identifier.citedreferenceRomero R, Yoon BH, Kenney JS, Gomez R, Allison AC, Sehgal PB. Amniotic fluid interleukinâ 6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993; 30: 167 â 183.
dc.identifier.citedreferenceYoon BH, Romero R, Kim CJ, et al. Amniotic fluid interleukinâ 6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am J Obstet Gynecol. 1995; 172: 960 â 970.
dc.identifier.citedreferenceCox SM, Casey ML, MacDonald PC. Accumulation of interleukinâ 1beta and interleukinâ 6 in amniotic fluid: a sequela of labour at term and preterm. Hum Reprod Update. 1997; 3: 517 â 527.
dc.identifier.citedreferenceYoon BH, Romero R, Jun JK, et al. Amniotic fluid cytokines (interleukinâ 6, tumor necrosis factorâ alpha, interleukinâ 1 beta, and interleukinâ 8) and the risk for the development of bronchopulmonary dysplasia. Am J Obstet Gynecol. 1997; 177: 825 â 830.
dc.identifier.citedreferenceArntzen KJ, Kjollesdal AM, Halgunset J, Vatten L, Austgulen R. TNF, ILâ 1, ILâ 6, ILâ 8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. J Perinat Med. 1998; 26: 17 â 26.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intraâ amniotic infection. Am J Obstet Gynecol. 1998; 179: 1267 â 1270.
dc.identifier.citedreferenceYoon BH, Romero R, Moon JB, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001; 185: 1130 â 1136.
dc.identifier.citedreferenceYoon BH, Romero R, Moon J, et al. Differences in the fetal interleukinâ 6 response to microbial invasion of the amniotic cavity between term and preterm gestation. J Matern Fetal Neonatal Med. 2003; 13: 32 â 38.
dc.identifier.citedreferenceJacobsson B, Mattsbyâ Baltzer I, Hagberg H. Interleukinâ 6 and interleukinâ 8 in cervical and amniotic fluid: relationship to microbial invasion of the chorioamniotic membranes. BJOG. 2005; 112: 719 â 724.
dc.identifier.citedreferenceHolst RM, Mattsbyâ Baltzer I, Wennerholm UB, Hagberg H, Jacobsson B. Interleukinâ 6 and interleukinâ 8 in cervical fluid in a population of Swedish women in preterm labor: relationship to microbial invasion of the amniotic fluid, intraâ amniotic inflammation, and preterm delivery. Acta Obstet Gynecol Scand. 2005; 84: 551 â 557.
dc.identifier.citedreferenceHolst RM, Laurini R, Jacobsson B, et al. Expression of cytokines and chemokines in cervical and amniotic fluid: relationship to histological chorioamnionitis. J Matern Fetal Neonatal Med. 2007; 20: 885 â 893.
dc.identifier.citedreferenceMenon R, Camargo MC, Thorsen P, Lombardi SJ, Fortunato SJ. Amniotic fluid interleukinâ 6 increase is an indicator of spontaneous preterm birth in white but not black Americans. Am J Obstet Gynecol. 2008; 198: 77 e71 â 77 e77.
dc.identifier.citedreferenceMarconi C, de Andrade Ramos BR, Peracoli JC, Donders GG, da Silva MG. Amniotic fluid interleukinâ 1 beta and interleukinâ 6, but not interleukinâ 8 correlate with microbial invasion of the amniotic cavity in preterm labor. Am J Reprod Immunol. 2011; 65: 549 â 556.
dc.identifier.citedreferenceCobo T, Palacio M, Martinezâ Terron M, et al. Clinical and inflammatory markers in amniotic fluid as predictors of adverse outcomes in preterm premature rupture of membranes. Am J Obstet Gynecol. 2011; 205: 126 e121 â 126 e128.
dc.identifier.citedreferenceCombs CA, Gravett C, Garite T, et al. Abstract No. 73: Intramniotic inflammation may be more important than the presence of microbes as a determinant of perinatal outcome in preterm labor. Am J Obstet Gynecol. 2013; 208: S44.
dc.identifier.citedreferenceRomero R, Kadar N, Miranda J, et al. The diagnostic performance of the Mass Restricted (MR) score in the identification of microbial invasion of the amniotic cavity or intraâ amniotic inflammation is not superior to amniotic fluid interleukinâ 6. J Matern Fetal Neonatal Med. 2014; 27: 757 â 769.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72: 458 â 474.
dc.identifier.citedreferenceKacerovsky M, Musilova I, Andrys C, et al. Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. Am J Obstet Gynecol. 2014; 210: 325 e321 â 325 e310.
dc.identifier.citedreferenceKacerovsky M, Musilova I, Hornychova H, et al. Bedside assessment of amniotic fluid interleukinâ 6 in preterm prelabor rupture of membranes. Am J Obstet Gynecol. 2014; 211: 385.e1 â 9.
dc.identifier.citedreferenceCombs CA, Gravett M, Garite TJ, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014; 210: 125 e121 â 125 e115.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for the determination of amniotic fluid interleukinâ 6 and the chemokine CXCLâ 10/IPâ 10. J Matern Fetal Neonatal Med. 2015; 28: 1510 â 1519.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukinâ 6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intraâ amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2015; 1 â 8.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukinâ 6 bedside test for the identification of intraâ amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2015; 1 â 11.
dc.identifier.citedreferenceRomero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptideâ 1/interleukinâ 8 in term and preterm parturition. Am J Obstet Gynecol. 1991; 165: 813 â 820.
dc.identifier.citedreferenceCherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptideâ 1/interleukinâ 8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993; 169: 1299 â 1303.
dc.identifier.citedreferenceGomez R, Ghezzi F, Romero R, Munoz H, Tolosa JE, Rojas I. Premature labor and intraâ amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology. Clin Perinatol. 1995; 22: 281 â 342.
dc.identifier.citedreferenceGhezzi F, Gomez R, Romero R, et al. Elevated interleukinâ 8 concentrations in amniotic fluid of mothers whose neonates subsequently develop bronchopulmonary dysplasia. Eur J Obstet Gynecol Reprod Biol. 1998; 78: 5 â 10.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, Copel JA. The role of amniotic fluid Lâ selectin, GROâ alpha, and interleukinâ 8 in the pathogenesis of intraamniotic infection. Am J Obstet Gynecol. 1998; 178: 428 â 432.
dc.identifier.citedreferenceJacobsson B, Mattsbyâ Baltzer I, Andersch B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women in preterm labor. Acta Obstet Gynecol Scand. 2003; 82: 120 â 128.
dc.identifier.citedreferenceJacobsson B, Mattsbyâ Baltzer I, Andersch B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2003; 82: 423 â 431.
dc.identifier.citedreferenceFigueroa R, Garry D, Elimian A, Patel K, Sehgal PB, Tejani N. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2005; 18: 241 â 247.
dc.identifier.citedreferenceWitt A, Berger A, Gruber CJ, Petricevic L, Apfalter P, Husslein P. ILâ 8 concentrations in maternal serum, amniotic fluid and cord blood in relation to different pathogens within the amniotic cavity. J Perinat Med. 2005; 33: 22 â 26.
dc.identifier.citedreferenceCobo T, Kacerovsky M, Palacio M, et al. Intraâ amniotic inflammatory response in subgroups of women with preterm prelabor rupture of the membranes. PLoS One. 2012; 7: e43677.
dc.identifier.citedreferenceRomero R, Brody DT, Oyarzun E, et al. Infection and labor. III. Interleukinâ 1: a signal for the onset of parturition. Am J Obstet Gynecol. 1989; 160: 1117 â 1123.
dc.identifier.citedreferenceMitchell MD, Edwin SS, Silver RM, Romero RJ. Potential agonist action of the interleukinâ 1 receptor antagonist protein: implications for treatment of women. J Clin Endocrinol Metab. 1993; 76: 1386 â 1388.
dc.identifier.citedreferenceRomero R, Manogue KR, Mitchell MD, et al. Infection and labor. IV. Cachectinâ tumor necrosis factor in the amniotic fluid of women with intraamniotic infection and preterm labor. Am J Obstet Gynecol. 1989; 161: 336 â 341.
dc.identifier.citedreferenceRomero R, Mazor M, Sepulveda W, Avila C, Copeland D, Williams J. Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol. 1992; 166: 1576 â 1587.
dc.identifier.citedreferenceSadowsky DW, Adams KM, Gravett MG, Witkin SS, Novy MJ. Preterm labor is induced by intraamniotic infusions of interleukinâ 1beta and tumor necrosis factorâ alpha but not by interleukinâ 6 or interleukinâ 8 in a nonhuman primate model. Am J Obstet Gynecol. 2006; 195: 1578 â 1589.
dc.identifier.citedreferenceAthayde N, Romero R, Maymon E, et al. Interleukin 16 in pregnancy, parturition, rupture of fetal membranes, and microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2000; 182: 135 â 141.
dc.identifier.citedreferencePacora P, Romero R, Maymon E, et al. Participation of the novel cytokine interleukin 18 in the host response to intraâ amniotic infection. Am J Obstet Gynecol. 2000; 183: 1138 â 1143.
dc.identifier.citedreferenceGreig PC, Herbert WN, Robinette BL, Teot LA. Amniotic fluid interleukinâ 10 concentrations increase through pregnancy and are elevated in patients with preterm labor associated with intrauterine infection. Am J Obstet Gynecol. 1995; 173: 1223 â 1227.
dc.identifier.citedreferenceGotsch F, Romero R, Kusanovic JP, et al. The antiâ inflammatory limb of the immune response in preterm labor, intraâ amniotic infection/inflammation, and spontaneous parturition at term: a role for interleukinâ 10. J Matern Fetal Neonatal Med. 2008; 21: 529 â 547.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Human neutrophil collagenase (matrix metalloproteinase 8) in parturition, premature rupture of the membranes, and intrauterine infection. Am J Obstet Gynecol. 2000; 183: 94 â 99.
dc.identifier.citedreferenceMaymon E, Romero R, Chaiworapongsa T, et al. Amniotic fluid matrix metalloproteinaseâ 8 in preterm labor with intact membranes. Am J Obstet Gynecol. 2001; 185: 1149 â 1155.
dc.identifier.citedreferenceAngus SR, Segel SY, Hsu CD, et al. Amniotic fluid matrix metalloproteinaseâ 8 indicates intraâ amniotic infection. Am J Obstet Gynecol. 2001; 185: 1232 â 1238.
dc.identifier.citedreferenceNien JK, Yoon BH, Espinoza J, et al. A rapid MMPâ 8 bedside test for the detection of intraâ amniotic inflammation identifies patients at risk for imminent preterm delivery. Am J Obstet Gynecol. 2006; 195: 1025 â 1030.
dc.identifier.citedreferenceKim KW, Romero R, Park HS, et al. A rapid matrix metalloproteinaseâ 8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. Am J Obstet Gynecol. 2007; 197: 292 e291 â 292 e295.
dc.identifier.citedreferencePark CW, Lee SM, Park JS, Jun JK, Romero R, Yoon BH. The antenatal identification of funisitis with a rapid MMPâ 8 bedside test. J Perinat Med. 2008; 36: 497 â 502.
dc.identifier.citedreferencePark CW, Yoon BH, Kim SM, Park JS, Jun JK. The frequency and clinical significance of intraâ amniotic inflammation defined as an elevated amniotic fluid matrix metalloproteinaseâ 8 in patients with preterm labor and low amniotic fluid white blood cell counts. Obstet Gynecol Sci. 2013; 56: 167 â 175.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Evidence for the participation of interstitial collagenase (matrix metalloproteinase 1) in preterm premature rupture of membranes. Am J Obstet Gynecol. 2000; 183: 914 â 920.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. A role for the 72 kDa gelatinase (MMPâ 2) and its inhibitor (TIMPâ 2) in human parturition, premature rupture of membranes and intraamniotic infection. J Perinat Med. 2001; 29: 308 â 316.
dc.identifier.citedreferencePark KH, Chaiworapongsa T, Kim YM, et al. Matrix metalloproteinase 3 in parturition, premature rupture of the membranes, and microbial invasion of the amniotic cavity. J Perinat Med. 2003; 31: 12 â 22.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Matrilysin (matrix metalloproteinase 7) in parturition, premature rupture of membranes, and intrauterine infection. Am J Obstet Gynecol. 2000; 182: 1545 â 1553.
dc.identifier.citedreferenceLocksmith GJ, Clark P, Duff P, Schultz GS. Amniotic fluid matrix metalloproteinaseâ 9 levels in women with preterm labor and suspected intraâ amniotic infection. Obstet Gynecol. 1999; 94: 1 â 6.
dc.identifier.citedreferenceMaymon E, Romero R, Pacora P, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intraâ amniotic infection. Am J Obstet Gynecol. 2000; 183: 887 â 894.
dc.identifier.citedreferenceHarirah H, Donia SE, Hsu CD. Amniotic fluid matrix metalloproteinaseâ 9 and interleukinâ 6 in predicting intraâ amniotic infection. Obstet Gynecol. 2002; 99: 80 â 84.
dc.identifier.citedreferenceJacobsson B, Holst RM, Wennerholm UB, Andersson B, Lilja H, Hagberg H. Monocyte chemotactic proteinâ 1 in cervical and amniotic fluid: relationship to microbial invasion of the amniotic cavity, intraâ amniotic inflammation, and preterm delivery. Am J Obstet Gynecol. 2003; 189: 1161 â 1167.
dc.identifier.citedreferenceEsplin MS, Romero R, Chaiworapongsa T, et al. Monocyte chemotactic proteinâ 1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intraâ amniotic infection. J Matern Fetal Neonatal Med. 2005; 17: 365 â 373.
dc.identifier.citedreferenceKacerovsky M, Celec P, Vlkova B, et al. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PLoS One. 2013; 8: e60399.
dc.identifier.citedreferenceJacobsson B, Holst RM, Andersson B, Hagberg H. Monocyte chemotactic proteinâ 2 and â 3 in amniotic fluid: relationship to microbial invasion of the amniotic cavity, intraâ amniotic inflammation and preterm delivery. Acta Obstet Gynecol Scand. 2005; 84: 566 â 571.
dc.identifier.citedreferenceMittal P, Romero R, Kusanovic JP, et al. CXCL6 (granulocyte chemotactic proteinâ 2): a novel chemokine involved in the innate immune response of the amniotic cavity. Am J Reprod Immunol. 2008; 60: 246 â 257.
dc.identifier.citedreferenceGervasi MT, Romero R, Bracalente G, et al. Midtrimester amniotic fluid concentrations of interleukinâ 6 and interferonâ gammaâ inducible proteinâ 10: evidence for heterogeneity of intraâ amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med. 2012; 40: 329 â 343.
dc.identifier.citedreferenceNhanâ Chang CL, Romero R, Kusanovic JP, et al. A role for CXCL13 (BCAâ 1) in pregnancy and intraâ amniotic infection/inflammation. J Matern Fetal Neonatal Med. 2008; 21: 763 â 775.
dc.identifier.citedreferenceKeelan JA, Wang K, Chaiworapongsa T, et al. Macrophage inhibitory cytokine 1 in fetal membranes and amniotic fluid from pregnancies with and without preterm labour and premature rupture of membranes. Mol Hum Reprod. 2003; 9: 535 â 540.
dc.identifier.citedreferenceChaiworapongsa T, Romero R, Espinoza J, et al. Macrophage migration inhibitory factor in patients with preterm parturition and microbial invasion of the amniotic cavity. J Matern Fetal Neonatal Med. 2005; 18: 405 â 416.
dc.identifier.citedreferenceAthayde N, Romero R, Maymon E, et al. A role for the novel cytokine RANTES in pregnancy and parturition. Am J Obstet Gynecol. 1999; 181: 989 â 994.
dc.identifier.citedreferenceKeelan JA, Yang J, Romero RJ, et al. Epithelial cellâ derived neutrophilâ activating peptideâ 78 is present in fetal membranes and amniotic fluid at increased concentrations with intraâ amniotic infection and preterm delivery. Biol Reprod. 2004; 70: 253 â 259.
dc.identifier.citedreferenceCohen J, Ghezzi F, Romero R, et al. GRO alpha in the fetomaternal and amniotic fluid compartments during pregnancy and parturition. Am J Reprod Immunol. 1996; 35: 23 â 29.
dc.identifier.citedreferencePacora P, Romero R, Chaiworapongsa T, et al. Amniotic fluid angiopoietinâ 2 in term and preterm parturition, and intraâ amniotic infection/inflammation. J Perinat Med. 2009; 37: 503 â 511.
dc.identifier.citedreferenceAndrys C, Kacerovsky M, Drahosova M, et al. Amniotic fluid soluble Tollâ like receptor 2 in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2013; 26: 520 â 527.
dc.identifier.citedreferenceStampalija T, Chaiworapongsa T, Romero R, et al. Soluble ST2, a modulator of the inflammatory response, in preterm and term labor. J Matern Fetal Neonatal Med. 2014; 27: 111 â 121.
dc.identifier.citedreferencePark SP, Kim SA. Abstract No 322: The value of the genedia MMPâ 8 rapid test for diagnosing intraamniotic infection/inflammation and predicting adverse pregnancy outcomes in women with preterm premature rupture of membranes. Am J Obstet Gynecol. 2015; 212: S174.
dc.identifier.citedreferencePark JY, Romero R, Lee J, Chaemsaithong P, Chaiyasit N, Yoon BH. An elevated amniotic fluid prostaglandin F2a concentration is associated with intraâ amniotic inflammation/infection, clinical and histologic chorioamnionitis as well as impending preterm delivery in patients with preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 2563 â 2572.
dc.identifier.citedreferenceRomero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015; 213: 836 e831 â 836 e818.
dc.identifier.citedreferenceBlanc WA. Pathology of the placenta and cord in ascending and in haematogenous infection. Ciba Found Symp. 1979; 17 â 38.
dc.identifier.citedreferenceRussell P. Inflammatory lesions of the human placenta: clinical significance of acute chorioamnionitis. Am J Diagn Gynecol Obstet. 1979; 2: 127 â 137.
dc.identifier.citedreferenceHillier SL, Martius J, Krohn M, Kiviat N, Holmes KK, Eschenbach DA. A caseâ control study of chorioamnionic infection and histologic chorioamnionitis in prematurity. N Engl J Med. 1988; 319: 972 â 978.
dc.identifier.citedreferenceSalafia CM, Weigl C, Silberman L. The prevalence and distribution of acute placental inflammation in uncomplicated term pregnancies. Obstet Gynecol. 1989; 73: 383 â 389.
dc.identifier.citedreferenceSalafia CM, Vogel CA, Vintzileos AM, Bantham KF, Pezzullo J, Silberman L. Placental pathologic findings in preterm birth. Am J Obstet Gynecol. 1991; 165: 934 â 938.
dc.identifier.citedreferenceRomero R, Salafia CM, Athanassiadis AP, et al. The relationship between acute inflammatory lesions of the preterm placenta and amniotic fluid microbiology. Am J Obstet Gynecol. 1992; 166: 1382 â 1388.
dc.identifier.citedreferenceRedline RW, Fayeâ Petersen O, Heller D, Qureshi F, Savell V, Vogler C. Amniotic infection syndrome: nosology and reproducibility of placental reaction patterns. Pediatr Dev Pathol. 2003; 6: 435 â 448.
dc.identifier.citedreferenceRedline RW. Placental inflammation. Semin Neonatol. 2004; 9: 265 â 274.
dc.identifier.citedreferenceRedline RW. Infections and other inflammatory conditions. Semin Diagn Pathol. 2007; 24: 5 â 13.
dc.identifier.citedreferenceMenon R, Taylor RN, Fortunato SJ. Chorioamnionitisâ a complex pathophysiologic syndrome. Placenta. 2010; 31: 113 â 120.
dc.identifier.citedreferenceRedline RW. Inflammatory response in acute chorioamnionitis. Semin Fetal Neonatal Med. 2012; 17: 20 â 25.
dc.identifier.citedreferenceMartinelli P, Sarno L, Maruotti GM, Paludetto R. Chorioamnionitis and prematurity: a critical review. J Matern Fetal Neonatal Med. 2012; 25 ( Suppl 4 ): 29 â 31.
dc.identifier.citedreferenceTorricelli M, Voltolini C, Toti P, et al. Histologic chorioamnionitis: different histologic features at different gestational ages. J Matern Fetal Neonatal Med. 2014; 27: 910 â 913.
dc.identifier.citedreferenceKim SM, Romero R, Park JW, Oh KJ, Jun JK, Yoon BH. The relationship between the intensity of intraâ amniotic inflammation and the presence and severity of acute histologic chorioamnionitis in preterm gestation. J Matern Fetal Neonatal Med. 2015; 28: 1500 â 1509.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015; 213: S29 â S52.
dc.identifier.citedreferencePacora P, Chaiworapongsa T, Maymon E, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002; 11: 18 â 25.
dc.identifier.citedreferenceKim CJ, Yoon BH, Park SS, Kim MH, Chi JG. Acute funisitis of preterm but not term placentas is associated with severe fetal inflammatory response. Hum Pathol. 2001; 32: 623 â 629.
dc.identifier.citedreferenceKim EN, Kim CJ, Park JW, Yoon BH. Acute funisitis is associated with distinct changes in fetal hematologic profile. J Matern Fetal Neonatal Med. 2015; 28: 588 â 593.
dc.identifier.citedreferenceLee J, Oh KJ, Park CW, Park JS, Jun JK, Yoon BH. The presence of funisitis is associated with a decreased risk for the development of neonatal respiratory distress syndrome. Placenta. 2011; 32: 235 â 240.
dc.identifier.citedreferenceLee J, Romero R, Kim SM, et al. A new antiâ microbial combination prolongs the latency period, reduces acute histologic chorioamnionitis as well as funisitis, and improves neonatal outcomes in preterm PROM. J Matern Fetal Neonatal Med. 2016; 29: 707 â 720.
dc.identifier.citedreferenceMi Lee S, Romero R, Lee KA, et al. The frequency and risk factors of funisitis and histologic chorioamnionitis in pregnant women at term who delivered after the spontaneous onset of labor. J Matern Fetal Neonatal Med. 2011; 24: 37 â 42.
dc.identifier.citedreferenceYoon BH, Romero R, Shim JY, Shim SS, Kim CJ, Jun JK. Câ reactive protein in umbilical cord blood: a simple and widely available clinical method to assess the risk of amniotic fluid infection and funisitis. J Matern Fetal Neonatal Med. 2003; 14: 85 â 90.
dc.identifier.citedreferencePark CW, Park JS, Moon KC, Jun JK, Yoon BH. Preterm labor and preterm premature rupture of membranes have a different pattern in the involved compartments of acute histologoic chorioamnionitis and/or funisitis: pathoâ physiologic implication related to different clinical manifestations. Pathol Int. 2016; 66: 325 â 332.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraâ amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014; 71: 330 â 358.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Sterile intraâ amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2014; 1 â 17.
dc.identifier.citedreferenceRomero R, Miranda J, Chaemsaithong P, et al. Sterile and microbialâ associated intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28: 1394 â 1409.
dc.identifier.citedreferenceRomero R, Miranda J, Kusanovic JP, et al. Clinical chorioamnionitis at term I: microbiology of the amniotic cavity using cultivation and molecular techniques. J Perinat Med. 2015; 43: 19 â 36.
dc.identifier.citedreferenceMusilova I, Kutova R, Pliskova L, et al. Intraamniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes. PLoS One. 2015; 10: e0133929.
dc.identifier.citedreferenceHecht JL, Fichorova RN, Tang VF, Allred EN, McElrath TF, Leviton A. Relationship between neonatal blood protein concentrations and placenta histologic characteristics in extremely low GA newborns. Pediatr Res. 2011; 69: 68 â 73.
dc.identifier.citedreferenceCommittee opinion no 611: method for estimating due date. Obstet Gynecol. 2014; 124: 863 â 866.
dc.identifier.citedreferenceMadan I, Romero R, Kusanovic JP, et al. The frequency and clinical significance of intraâ amniotic infection and/or inflammation in women with placenta previa and vaginal bleeding: an unexpected observation. J Perinat Med. 2010; 38: 275 â 279.
dc.identifier.citedreferenceDiGiulio DB, Gervasi M, Romero R, et al. Microbial invasion of the amniotic cavity in preeclampsia as assessed by cultivation and sequenceâ based methods. J Perinat Med. 2010; 38: 503 â 513.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damageâ associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011; 24: 1444 â 1455.
dc.identifier.citedreferencePark KH, Kim SN, Oh KJ, Lee SY, Jeong EH, Ryu A. Noninvasive prediction of intraâ amniotic infection and/or inflammation in preterm premature rupture of membranes. Reprod Sci. 2012; 19: 658 â 665.
dc.identifier.citedreferenceRedline RW. Inflammatory responses in the placenta and umbilical cord. Semin Fetal Neonatal Med. 2006; 11: 296 â 301.
dc.identifier.citedreferenceRedline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015; 213: S21 â S28.
dc.identifier.citedreferenceKim JS, Romero R, Kim MR, et al. Involvement of Hofbauer cells and maternal T cells in villitis of unknown aetiology. Histopathology. 2008; 52: 457 â 464.
dc.identifier.citedreferenceRedline RW. Villitis of unknown etiology: noninfectious chronic villitis in the placenta. Hum Pathol. 2007; 38: 1439 â 1446.
dc.identifier.citedreferenceRomero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988; 12: 262 â 279.
dc.identifier.citedreferenceRomero R, Mazor M. Infection and preterm labor. Clin Obstet Gynecol. 1988; 31: 553 â 584.
dc.identifier.citedreferenceRomero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989; 161: 817 â 824.
dc.identifier.citedreferenceGomez R, Romero R, Edwin SS, David C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am. 1997; 11: 135 â 176.
dc.identifier.citedreferenceRomero R, Gomez R, Chaiworapongsa T, Conoscenti G, Kim JC, Kim YM. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol. 2001; 15 ( Suppl 2 ): 41 â 56.
dc.identifier.citedreferenceRomero R, Espinoza J, Chaiworapongsa T, Kalache K. Infection and prematurity and the role of preventive strategies. Semin Neonatol. 2002; 7: 259 â 274.
dc.identifier.citedreferenceLeigh J, Garite TJ. Amniocentesis and the management of premature labor. Obstet Gynecol. 1986; 67: 500 â 506.
dc.identifier.citedreferenceRomero R, Avila C, Brekus CA, Morotti R. The role of systemic and intrauterine infection in preterm parturition. Ann N Y Acad Sci. 1991; 622: 355 â 375.
dc.identifier.citedreferenceGauthier DW, Meyer WJ, Bieniarz A. Correlation of amniotic fluid glucose concentration and intraamniotic infection in patients with preterm labor or premature rupture of membranes. Am J Obstet Gynecol. 1991; 165: 1105 â 1110.
dc.identifier.citedreferenceCoultrip LL, Grossman JH. Evaluation of rapid diagnostic tests in the detection of microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 1992; 167: 1231 â 1242.
dc.identifier.citedreferenceWatts DH, Krohn MA, Hillier SL, Eschenbach DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol. 1992; 79: 351 â 357.
dc.identifier.citedreferenceCoultrip LL, Lien JM, Gomez R, Kapernick P, Khoury A, Grossman JH. The value of amniotic fluid interleukinâ 6 determination in patients with preterm labor and intact membranes in the detection of microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 1994; 171: 901 â 911.
dc.identifier.citedreferenceGoncalves LF, Chaiworapongsa T, Romero R. Intrauterine infection and prematurity. Ment Retard Dev Disabil Res Rev. 2002; 8: 3 â 13.
dc.identifier.citedreferenceRomero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007; 25: 21 â 39.
dc.identifier.citedreferenceRomero R, Quintero R, Oyarzun E, et al. Intraamniotic infection and the onset of labor in preterm premature rupture of the membranes. Am J Obstet Gynecol. 1988; 159: 661 â 666.
dc.identifier.citedreferenceRomero R, Ghidini A, Mazor M, Behnke E. Microbial invasion of the amniotic cavity in premature rupture of membranes. Clin Obstet Gynecol. 1991; 34: 769 â 778.
dc.identifier.citedreferenceRomero R, Gonzalez R, Sepulveda W, et al. Infection and labor. VIII. Microbial invasion of the amniotic cavity in patients with suspected cervical incompetence: prevalence and clinical significance. Am J Obstet Gynecol. 1992; 167: 1086 â 1091.
dc.identifier.citedreferenceRomero R, Avila C, Sepulveda W, et al. The role of systemic and intrauterine infection in preterm labor. In: Fuchs A, Fuchs F, Stubblefield P, eds. Preterm Birth: Causes, Prevention, and Management. New York: McGrawâ Hill Inc.; 1993: 97.
dc.identifier.citedreferenceMatzinger P. The danger model: a renewed sense of self. Science. 2002; 296: 301 â 305.
dc.identifier.citedreferenceOppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol. 2005; 17: 359 â 365.
dc.identifier.citedreferenceHarris HE, Raucci A. Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. EMBO Rep. 2006; 7: 774 â 778.
dc.identifier.citedreferenceBianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007; 81: 1 â 5.
dc.identifier.citedreferenceRomero R, Espinoza J, Hassan S, et al. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: modulation by infection and inflammation. J Perinat Med. 2008; 36: 388 â 398.
dc.identifier.citedreferenceGotsch F, Romero R, Chaiworapongsa T, et al. Evidence of the involvement of caspaseâ 1 under physiologic and pathologic cellular stress during human pregnancy: a link between the inflammasome and parturition. J Matern Fetal Neonatal Med. 2008; 21: 605 â 616.
dc.identifier.citedreferenceChaiworapongsa T, Erez O, Kusanovic JP, et al. Amniotic fluid heat shock protein 70 concentration in histologic chorioamnionitis, term and preterm parturition. J Matern Fetal Neonatal Med. 2008; 21: 449 â 461.
dc.identifier.citedreferenceBianchi ME, Manfredi AA. Immunology. Dangers in and out. Science. 2009; 323: 1683 â 1684.
dc.identifier.citedreferencePiccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010; 2010.
dc.identifier.citedreferenceChen GY, Nunez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010; 10: 826 â 837.
dc.identifier.citedreferenceNunez G. Intracellular sensors of microbes and danger. Immunol Rev. 2011; 243: 5 â 8.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Savasan ZA, et al. Clinical chorioamnionitis is characterized by changes in the expression of the alarmin HMGB1 and one of its receptors, sRAGE. J Matern Fetal Neonatal Med. 2012; 25: 558 â 567.
dc.identifier.citedreferenceBredeson S, DeFord J, Yin H, Papaconstantinou J, Saade G, Menon R. Abstract No. 710: Acetylated HMGB1 in human amniotic fluid as an important factor in premature preterm rupture of the membranes. Am J Obstet Gynecol. 2014; 2010: S348.
dc.identifier.citedreferenceAhmed AI, Chaemsaithong P, Chaiworapongsa T, et al. Abstract No. 599: A receptor for danger signals, advanced glycation and products (RAGE) in fetal inflammation and clinical chorioamnionitis. Am J Obstet Gynecol. 2015; 212: S298.
dc.identifier.citedreferenceBehnia F, Taylor BD, Woodson M, et al. Chorioamniotic membrane senescence: a signal for parturition? Am J Obstet Gynecol. 2015; 213: 359 e351 â 359 e316.
dc.identifier.citedreferenceBehnia F, Saade G, Micheal V, et al. Abstract No. 98: Term fetal membranes and senescence associated secretory phenotype (SASP)â like gene expression: a signal for parturition? Am J Obstet Gynecol. 2015; 212: S66.
dc.identifier.citedreferencePolettini J, Dutta E, Kechichian T, et al. Abstract No. 73: Activation of p38MAPK and senescence in fetal membranes induced by telomere overhang sequence: a novel mechanism for preterm birth. Am J Obstet Gynecol. 2015; 212: S51.
dc.identifier.citedreferenceDutta E, Kacerovsky M, Behnia F, Kechichian T, Saade G, Menon R. Abstract No. 152: Development of DNA damage foci, loss of lamin B and activation of pp38MAPK: classic signs of senescence in human amniochorion. Am J Obstet Gynecol. 2015; 212: S92.
dc.identifier.citedreferenceMontenegro D, Romero R, Pineles BL, et al. Differential expression of the inflammasome components in the fetal inflammatory response syndrome. Reprod Sci. 2007; 14: 59A â 60A.
dc.identifier.citedreferencePineles BL, Romero R, Montenegro D, et al. The inflammasome in human parturition. Reprod Sci. 2007; 14: 59A.
dc.identifier.citedreferenceAbrahams VM. The role of the Nodâ like receptor family in trophoblast innate immune responses. J Reprod Immunol. 2011; 88: 112 â 117.
dc.identifier.citedreferenceLappas M. Caspaseâ 1 activation is increased with human labour in foetal membranes and myometrium and mediates infectionâ induced interleukinâ 1beta secretion. Am J Reprod Immunol. 2014; 71: 189 â 201.
dc.identifier.citedreferenceRomero R, Gomezâ Lopez N, Xu Y, et al. A role of inflammasome in spontaneous labor at term. Abstract presented at 12th World Congress of Perinatal Medicine, 3rdâ 6th November, 2015, Madrid, Spain; 2015.
dc.identifier.citedreferenceGomezâ Lopez N, Romero R, Plazyo O, et al. Intraâ amniotic administration of HMGB1 induces spontaneous preterm labor and birth. Am J Reprod Immunol. 2016; 75: 3 â 7.
dc.identifier.citedreferencePlazyo O, Romero R, Unkel R, et al. HMGB1 induces an inflammatory response in the chorioamniotic membranes that is partially mediated by the inflammasome. Biol Reprod. 2016; 95: 130.
dc.identifier.citedreferenceRomero R, Gomez R, Galasso M, et al. Macrophage inflammatory proteinâ 1 alpha in term and preterm parturition: effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol. 1994; 32: 108 â 113.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.