Show simple item record

N‐terminal diproline and charge group effects on the stabilization of helical conformation in alanine‐based short peptides: CD studies with water and methanol as solvent

dc.contributor.authorGoyal, Bhupesh
dc.contributor.authorSrivastava, Kinshuk Raj
dc.contributor.authorDurani, Susheel
dc.date.accessioned2017-06-16T20:16:20Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-06
dc.identifier.citationGoyal, Bhupesh; Srivastava, Kinshuk Raj; Durani, Susheel (2017). "N‐terminal diproline and charge group effects on the stabilization of helical conformation in alanine‐based short peptides: CD studies with water and methanol as solvent." Journal of Peptide Science 23(6): 431-437.
dc.identifier.issn1075-2617
dc.identifier.issn1099-1387
dc.identifier.urihttps://hdl.handle.net/2027.42/137582
dc.publisherPlenum
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein folding
dc.subject.otheralanine‐based peptides
dc.subject.othercircular dichroism
dc.subject.otherhelical conformation
dc.subject.otherN‐terminal diproline
dc.subject.otherpolyproline II (PPII) conformation
dc.titleN‐terminal diproline and charge group effects on the stabilization of helical conformation in alanine‐based short peptides: CD studies with water and methanol as solvent
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137582/1/psc3005.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137582/2/psc3005_am.pdf
dc.identifier.doi10.1002/psc.3005
dc.identifier.sourceJournal of Peptide Science
dc.identifier.citedreferencePerham M, Liao J, Wittung‐Stafshede P. Differential effects of alcohols on conformational switchovers in α‐helical and β‐sheet protein models. Biochemistry 2006; 45: 7740 – 7749.
dc.identifier.citedreferenceHossain MA, Bathgate RAD, Kong CK, Shabanpoor F, Zhang S, Haugaard‐Jönsson LM, Rosengren KJ, Tregear GW, Wade JD. Synthesis, conformation, and activity of human insulin‐like peptide 5 (INSL5). Chembio. chem. 2008; 9: 1816 – 1822.
dc.identifier.citedreferenceBellanda M, Mammi S, Geremia S, Demitri N, Randaccio L, Broxterman QB, Kaptein B, Pengo P, Pasquato L, Scrimin P. Solvent polarity controls the helical conformation of short peptides rich in C α ‐tetrasubstituted amino acids. Chem. Eur. J. 2007; 13: 407 – 416.
dc.identifier.citedreferencePelay‐Gimeno M, Glas A, Koch O, Grossmann TN. Structure‐based design of inhibitors of protein‐protein interactions: Mimicking peptide binding epitopes. Angew. Chem. 2015; 127: 9022 – 9054 Angew. Chem. Int. Ed., 2015, 54, 8896–8927.
dc.identifier.citedreferenceEstieu‐Gionnet K, Guichard G. Stabilized helical peptides: overview of the technologies and therapeutic promises. Expert Opin. Drug Discovery 2011; 6: 937 – 963.
dc.identifier.citedreferenceSpek EJ, Olson CA, Shi Z, Kallenbach NR. Alanine is an intrinsic α‐helix stabilizing amino acid. J. Am. Chem. Soc. 1999; 121: 5571 – 5572.
dc.identifier.citedreferenceLopes JL, Miles AJ, Whitmore L, Wallace BA. Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in secondary structure analyses. Protein Sci. 2014; 23: 1765 – 1772.
dc.identifier.citedreferenceWoody RW. Circular dichroism spectrum of peptides in the poly(pro)II conformation. J. Am. Chem. Soc. 2009; 131: 8234 – 8245.
dc.identifier.citedreferenceKallenbach NR, Lyu PC, Zhou H. In Circular Dichroism and the Conformation Analysis of Biomolecules, Fasman GD (ed.). Plenum: New York, 1996; 201 – 259.
dc.identifier.citedreferenceBanerji B, Pramanik SK, Pal U, Maiti NC. Conformation and cytotoxicity of a tetrapeptide constellated with alternative D ‐ and L ‐proline. RSC Adv. 2012; 2: 6744 – 6747.
dc.identifier.citedreferenceHwang S, Shao Q, Williams H, Hilty C, Gao YQ. Methanol strengthens hydrogen bonds and weakens hydrophobic interactions in proteins ‐ A combined molecular dynamics and NMR study. J. Phys. Chem. B 2011; 115: 6653 – 6660.
dc.identifier.citedreferenceMunoz V, Blanco FJ, Serrano L. The distribution of alpha‐helix propensity along the polypeptide chain is not conserved in proteins from the same family. Protein Sci. 1995; 4: 1577 – 1586.
dc.identifier.citedreferenceSaha I, Shamala N. Investigating diproline segments in proteins: Occurrences, conformation and classification. Biopolymers 2012; 97: 54 – 64.
dc.identifier.citedreferenceRaghavender US. Ultrafast folding and molecular dynamics of a linear hydrophobic β‐hairpin. J. Biomol. Struct. Dyn. 2013; 31: 1404 – 1410.
dc.identifier.citedreferenceKony DB, Hunenberger PH, van Gunsteren WF. Molecular dynamics simulations of the native and partially folded states of ubiquitin: Influence of methanol cosolvent, pH, and temperature on the protein structure and dynamics. Protein Sci. 2007; 16: 1101 – 1118.
dc.identifier.citedreferenceKuo CH, Peng LT, Kan SC, Liu YC, Shieh CJ. Lipase‐immobilized biocatalytic membranes for biodiesel production. Bioresour. Technol. 2013; 145: 229 – 232.
dc.identifier.citedreferenceHolzwarth G, Doty P. The ultraviolet circular dichroism of polypeptides. J. Am. Chem. Soc. 1965; 87: 218 – 228.
dc.identifier.citedreferenceDalzini A, Bergamini C, Biondi B, Zotti MD, Panighel G, Fato R, Peggion C, Bortolus M, Maniero AL. The rational search for selective anticancer derivatives of the peptide Trichogin GA IV: a multi‐technique biophysical approach. Sci. Rep. 2016; 6: 24000.
dc.identifier.citedreferenceFormaggio F, Crisma M, Rossi P, Scrimin P, Kaptein B, Broxterman QB, Kamphuis J, Toniolo C. The first water‐soluble 310‐helical peptides. Chem. Eur. J. 2000; 6: 4498 – 4504.
dc.identifier.citedreferenceManning MC, Woody RW. Theoretical CD studies of polypeptide helices: Examination of important electronic and geometric factors. Biopolymers 1991; 31: 569 – 586.
dc.identifier.citedreferenceGuarracino DA, Alabanza AM, Robertson CT, Sanghvi SS. The role of primary sequence in helical control compared across short a‐ and β 3 ‐peptides. J. Biomol. Struct. Dyn. 2015; 33: 597 – 605.
dc.identifier.citedreferenceQiu JX, Petersson EJ, Matthews EE, Schepartz A. Toward beta‐amino acid proteins: a cooperatively folded beta‐peptide quaternary structure. J. Am. Chem. Soc. 2006; 128: 11338 – 11339.
dc.identifier.citedreferenceEker F, Griebenow K, Schweitzer‐Stenner R. Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy. J. Am. Chem. Soc. 2003; 125: 8178 – 8185.
dc.identifier.citedreferenceSrivastava KR, Durani S. Interactions of main chain in folding and self assembly of unfolded protein structure: Enquiries with a serine solubilized nonapeptide. AIP Adv. 2014; 4: 067140.
dc.identifier.citedreferenceMu Y, Stock G. Conformational dynamics of trialanine in water: A molecular dynamics study. J. Phys. Chem. B 2002; 106: 5294 – 5301.
dc.identifier.citedreferenceTiffany ML, Krimm S. Circular dichroism of poly‐ L ‐proline in an unordered conformation. Biopolymers 1968; 6: 1767 – 1770.
dc.identifier.citedreferenceChan WC, White PD. Fmoc Solid Phase Peptide Synthesis: A Practical Approach. Oxford University Press: U.S.A., 2000.
dc.identifier.citedreferenceScopes RK. Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 1974; 59: 277 – 282.
dc.identifier.citedreferenceGrimsley GR, Pace CN. Spectrophotometric Determination of Protein Concentration. John Wiley & Sons, Inc.: In Current Protocols in Protein Science, 2003; 3.1.1 – 3.1.9.
dc.identifier.citedreferenceAnfinsen CB, Scheraga HA. Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 1975; 29: 205 – 300.
dc.identifier.citedreferenceCote Y, Maisuradze GG, Delarue P, Scheraga HA, Senet P. New insights into protein (un)folding dynamics. J. Phys. Chem. Lett. 2015; 6: 1082 – 1086.
dc.identifier.citedreferenceWolynes PG. Evolution, energy landscapes and the paradoxes of protein folding. Biochimie 2015; 119: 218 – 230.
dc.identifier.citedreferenceEnglander SW, Mayne L. The nature of protein folding pathways. Proc. Natl. Acad. Sci. U. S. A. 2014; 111: 15873 – 15880.
dc.identifier.citedreferenceCompiani M, Capriotti E. Computational and theoretical methods for protein folding. Biochemistry 2013; 52: 8601 – 8624.
dc.identifier.citedreferenceWang W‐Z, Lin T, Sun Y‐C. Examination of the folding of a short alanine‐based helical peptide with salt bridges using molecular dynamics simulation. J. Phys. Chem. B 2007; 111: 3508 – 3514.
dc.identifier.citedreferenceGhosh T, Garde S, García AE. Role of backbone hydration and salt‐bridge formation in stability of alpha‐helix in solution. Biophys. J. 2003; 85: 3187 – 3193.
dc.identifier.citedreferenceRaucci R, Colonna G, Castello G, Costantini S. Peptide folding problem: A molecular dynamics study on polyalanines using different force fields. Int. J. Pept. Res. Ther. 2013; 19: 117 – 123.
dc.identifier.citedreferenceBrooks BR, et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 2009; 30: 1545 – 1614.
dc.identifier.citedreferenceBest RB, Hummer G. Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J. Phys. Chem. B 2009; 113: 9004 – 9015.
dc.identifier.citedreferenceSchulz JC, Miettinen MS, Netz RR. Unfolding and folding internal friction of β‐hairpins is smaller than that of α‐helices. J. Phys. Chem. B 2015; 119: 4565 – 4574.
dc.identifier.citedreferenceLiu C, Ponder JW, Marshall GR. Helix stability of oligoglycine, oligoalanine, and oligo‐β‐alanine dodecemers reflected by hydrogen‐bond persistence. Proteins: Struct., Funct., Bioinf. 2014; 82: 3043 – 3061.
dc.identifier.citedreferenceRossi M, Blum V, Kupser P, von Helden G, Bierau F, Pagel K, Meijer G, Scheffler M. Secondary structure of Ac‐Ala n ‐LysH+ polyalanine peptides (n = 5,10,15) in vacuo: Helical or not? J. Phys. Chem. Lett. 2010; 1: 3465 – 3470.
dc.identifier.citedreferenceSrivastava KR, Kumar A, Goyal B, Durani S. Stereochemistry and solvent role in protein folding: nuclear magnetic resonance and molecular dynamics studies of poly‐ L and alternating‐ L,D homopolypeptides in dimethyl sulfoxide. J. Phys. Chem. B 2011; 115: 6700 – 6708.
dc.identifier.citedreferenceKumar A, Ramakrishnan V, Ranbhor R, Patel K, Durani S. Homochiral stereochemistry: the missing link of structure to energetics in protein folding. J. Phys. Chem. B 2009; 113: 16435 – 16442.
dc.identifier.citedreferenceMakowska J, Rodziewicz‐Motowildo S, Baginska K, Vila JA, Liwo A, Chmurzynski L, Scheraga HA. Polyproline II conformation is one of many local conformational states and is not an overall conformation of unfolded peptides and proteins. Proc. Natl. Acad. Sci. U. S. A. 2006; 103: 1744 – 1749.
dc.identifier.citedreferenceRamakrishnan V, Ranbhor R, Durani S. Existence of specific “folds” in polyproline II ensembles of an “unfolded” alanine peptide detected by molecular dynamics. J. Am. Chem. Soc. 2004; 126: 16332 – 16333.
dc.identifier.citedreferenceShi Z, Olson CA, Rose GD, Baldwin RL, Kallenbach NR. Polyproline II structure in a sequence of seven alanine residues. Proc. Natl. Acad. Sci. U. S. A. 2002; 99: 9190 – 9195.
dc.identifier.citedreferenceGoyal B, Kumar A, Srivastava KR, Durani S. Durani, Scrutiny of chain‐length and N‐terminal effects in a‐helix folding: A molecular dynamics study on polyalanine peptides. J. Biomol. Struct. Dyn. 2016; https://doi.org/10.1080/07391102.2016.1199972.
dc.identifier.citedreferenceGoyal B, Kumar A, Srivastava KR, Durani S. Computational scrutiny of the effect of N‐terminal proline and residue stereochemistry in the nucleation of a‐helix fold. RSC Adv. 2016; 6: 74162 – 74176.
dc.identifier.citedreferenceGoyal B, Srivastava KR, Kumar A, Patwari GN, Durani S. Probing the role of electrostatics of polypeptide main‐chain in protein folding by perturbing N‐terminal residue stereochemistry: DFT study with oligoalanine models. RSC Adv. 2016; 6: 113611 – 113619.
dc.identifier.citedreferenceCulik RM, Annavarapu S, Nanda V, Gai F. Using D ‐amino acids to delineate the mechanism of protein folding: application to Trp‐cage. Chem. Phys. 2013; 422: 131 – 134.
dc.identifier.citedreferenceRodriguez‐Granillo A, Annavarapu S, Zhang L, Koder RL, Nanda V. Computational design of thermostabilizing D ‐amino acid substitutions. J. Am. Chem. Soc. 2011; 133: 18750 – 18759.
dc.identifier.citedreferenceValiyaveetil FI, Sekedat M, MacKinnon R, Muir TW. Glycine as a D ‐amino acid surrogate in the K + ‐selectivity filter. Proc. Natl. Acad. Sci. U. S. A. 2004; 101: 17045 – 17049.
dc.identifier.citedreferenceStruthers MD, Cheng RP, Imperiali B. Design of a monomeric 23‐residue polypeptide with defined tertiary structure. Science 1996; 271: 342 – 345.
dc.identifier.citedreferenceGoyal B, Srivastava KR, Patel K, Durani S. Modulation of β‐hairpin peptide self‐assembly: A twenty‐residue poly‐L β‐hairpin modified rationally as a mixed‐ L,D hydrolase. ChemistrySelect 2016; 1: 2050 – 2057.
dc.identifier.citedreferenceGoyal B, Patel K, Srivastava KR, Durani S. De novo design of stereochemically–bent sixteen–residue β–hairpin as a hydrolase mimic. RSC Adv. 2015; 5: 105400 – 105408.
dc.identifier.citedreferencePatel K, Goyal B, Kumar A, Kishore N, Durani S. Cured of “stickiness”, poly‐L β‐hairpin is promoted with LL‐to‐DD mutation as a protein and a hydrolase mimic. J. Phys. Chem. B 2010; 114: 16887 – 16893.
dc.identifier.citedreferenceDurani S. Protein design with L ‐ and D ‐α‐amino acid structures as the alphabet. Acc. Chem. Res. 2008; 41: 1301 – 1308.
dc.identifier.citedreferenceBaker EG, Bartlett GJ, Crump MP, Sessions RB, Linden N, Faul CF, Woolfson DN. Local and macroscopic electrostatic interactions in single a‐helices. Nat. Chem. Biol. 2015; 11: 221 – 228.
dc.identifier.citedreferenceGao Y, Li Y, Mou L, Lin B, Zhang JZH, Mei Y. Correct folding of an α‐helix and a β‐hairpin using a polarized 2D torsional potential. Sci. Rep. 2015; 5: 10359 – 10364.
dc.identifier.citedreferenceEngler AC, Lee HI, Hammond PT. Highly efficient “grafting onto” a polypeptide backbone using click chemistry. Angew. Chem. 2009; 121: 9498 – 9502 Angew. Chem. Int. Ed., 2009, 48, 9334–9338.
dc.identifier.citedreferenceHadjichristidis N, Iatrou H, Pitsikalis M, Sakellariou G. Synthesis of well‐defined polypeptide‐based materials via the ring‐opening polymerization of α‐amino acid N‐carboxyanhydrides. Chem. Rev. 2009; 109: 5528 – 5578.
dc.identifier.citedreferenceWatkins AM, Wuo MG, Arora PS. Protein‐protein interactions mediated by helical tertiary structure motifs. J. Am. Chem. Soc. 2015; 137: 11622 – 11630.
dc.identifier.citedreferenceSnow CD, Sorin EJ, Rhee YM, Pande VS. How well can simulation predict protein folding kinetics and thermodynamics? Annu. Rev. Biophys. Biomol. Struct. 2005; 34: 43 – 69.
dc.identifier.citedreferenceKantharaju, Raghothama S, Aravinda S, Shamala N, Balaram P. Helical conformations of hexapeptides containing N‐terminus diproline segments. Biopolymers 2010; 94: 360 – 370.
dc.identifier.citedreferenceJob GE, Heitmann B, Kennedy RJ, Walker SM, Kemp DS. Calibrated calculation of polyalanine fractional helicities from circular dichroism ellipticities. Angew. Chem. 2004; 116: 5767 – 5769 Angew. Chem. Int. Ed., 2004, 43, 5649–5651.
dc.identifier.citedreferenceHeitmann B, Job GE, Kennedy RJ, Walker SM, Kemp DS. Water‐solubilized, cap‐stabilized, helical polyalanines: Calibration standards for NMR and CD analyses. J. Am. Chem. Soc. 2005; 127: 1690 – 1704.
dc.identifier.citedreferenceInayathullah M, Rajadas J. Conformational dynamics of a hydrophobic prion fragment (113–127) in different pH and osmolyte solutions. Neuropeptides 2016; 57: 9 – 14.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.