Show simple item record

Design of 2D Porous Coordination Polymers Based on Metallacrown Units

dc.contributor.authorAtzeri, Corrado
dc.contributor.authorMarchiò, Luciano
dc.contributor.authorChow, Chun Y.
dc.contributor.authorKampf, Jeff W.
dc.contributor.authorPecoraro, Vincent L.
dc.contributor.authorTegoni, Matteo
dc.date.accessioned2017-06-16T20:16:24Z
dc.date.available2017-06-16T20:16:24Z
dc.date.issued2016-05-04
dc.identifier.citationAtzeri, Corrado; Marchiò, Luciano ; Chow, Chun Y.; Kampf, Jeff W.; Pecoraro, Vincent L.; Tegoni, Matteo (2016). "Design of 2D Porous Coordination Polymers Based on Metallacrown Units." Chemistry – A European Journal 22(19): 6482-6486.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137586
dc.description.abstractA 12‐metallacrown‐4 (MC) complex was designed and employed as the building block in the synthesis of coordination polymers, one of which is the first permanently porous MC architecture. The connection of the four‐fold symmetric MC subunits by CuII nodes led to the formation of 2D layers of metallacrowns. Channels are present in the crystalline architecture, which exhibits permanent porosity manifested in N2 and CO2 uptake capacity.Permanently porous metallacrowns: Metallacrowns have been exploited for the first time as tailored building blocks for the construction of new (porous) coordination polymers. Metallacrowns are metal‐rich complexes that have exhibited excellent properties in magnetism and luminescence. Benefiting from high‐interest metallacrown building blocks in the synthesis of MOFs can unfold a whole new class of functional materials (see figure).
dc.publisherWiley Periodicals, Inc.
dc.subject.othercoordination polymers
dc.subject.otherhydroxamic acids
dc.subject.othergas adsorption
dc.subject.otherporosity
dc.subject.othermetallacrowns
dc.titleDesign of 2D Porous Coordination Polymers Based on Metallacrown Units
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137586/1/chem201600562-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137586/2/chem201600562.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137586/3/chem201600562_am.pdf
dc.identifier.doi10.1002/chem.201600562
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Moon, M. S. Lah, Inorg. Chem. 2005, 44, 1934 – 1940.
dc.identifier.citedreferenceE. V. Govor, A. B. Lysenko, A. N. Chernega, J. A. K. Howard, A. A. Mokhir, J. Sieler, K. V. Domasevitch, Polyhedron 2008, 27, 2349 – 2356.
dc.identifier.citedreferenceC.-S. Lim, J. Jankolovits, J. W. Kampf, V. L. Pecoraro, Chem. Asian J. 2010, 5, 46 – 49.
dc.identifier.citedreferenceA. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, L. K. Thompson, I. O. Fritsky, A. W. Addison, A. D. Hunter, Eur. J. Inorg. Chem. 2010, 4851 – 4858;
dc.identifier.citedreferenceA. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, O. V. Shvets, I. O. Fritsky, S. E. Lofland, A. W. Addison, A. D. Hunter, Eur. J. Inorg. Chem. 2011, 4826 – 4836.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Jankolovits, C.-S. Lim, G. Mezei, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 2012, 51, 4527 – 4538;
dc.identifier.citedreferenceG. Mezei, J. W. Kampf, S. Pan, K. R. Poeppelmeier, B. Watkins, V. L. Pecoraro, Chem. Commun. 2007, 1148 – 1150.
dc.identifier.citedreferenceT. Haemers, J. Wiesner, D. Gießmann, T. Verbrugghen, U. Hillaert, R. Ortmann, H. Jomaa, A. Link, M. Schlitzer, S. Van Calenbergh, Bioorg. Med. Chem. 2008, 16, 3361 – 3371.
dc.identifier.citedreferenceV. L. Pecoraro, A. J. Stemmler, B. R. Gibney, J. J. Bodwin, H. Wang, J. W. Kampf, A. Barwinski, Prog. Inorg. Chem. 1996, 45, 83 – 177.
dc.identifier.citedreferenceA. L. Spek, J. Appl. Crystallogr. 2003, 36, 7 – 13.
dc.identifier.citedreferenceThe uptake capacity of 1 was calculated as (wt of CO 2 uptake)/(wt of 1 ). If calculated as (wt of CO 2 uptake)/(wt of CO 2 uptake+wt of 1 ) the uptake capacity of 1 for CO 2 is 18.9 wt % at 195 K and 6.8 wt % at 273 K.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. K. Maji, G. Mostafa, R. Matsuda, S. Kitagawa, J. Am. Chem. Soc. 2005, 127, 17152 – 17153;
dc.identifier.citedreferenceY. E. Cheon, M. P. Suh, Chem. Eur. J. 2008, 14, 3961 – 3967;
dc.identifier.citedreferenceY. E. Cheon, M. P. Suh, Chem. Commun. 2009, 2296 – 2298;
dc.identifier.citedreferenceE. Neofotistou, C. D. Malliakas, P. N. Trikalitis, Chem. Eur. J. 2009, 15, 4523 – 4527;
dc.identifier.citedreferenceH.-S. Choi, M. P. Suh, Angew. Chem. Int. Ed. 2009, 48, 6865 – 6869; Angew. Chem. 2009, 121, 6997 – 7001.
dc.identifier.citedreferenceG. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today 1998, 41, 207 – 219.
dc.identifier.citedreferenceA. V. Pavlishchuk, Y. A. Satska, S. V. Kolotilov, I. O. Fritsky, Curr. Opin. Chem. Eng. Curr. Inorg. Chem. 2015, 5, 5 – 25.
dc.identifier.citedreferenceVoids in the packing are occupied by pyridine (0.6 molecules) or DMSO (0.4 molecules). Final formula results {(NEt 4 ) 2 {Cu II [12-MC CuII,hinHA -4](DMSO) 1.4 (Py) 0.6 }(DMSO) 0.4 (Py) 0.6 } n.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Férey, Chem. Soc. Rev. 2007, 36, 191 – 214;
dc.identifier.citedreferenceY. Cui, F. Zhu, B. Chen, G. Qian, Chem. Commun. 2015, 51, 7420 – 7431;
dc.identifier.citedreferenceX.-G. Liu, H. Wang, B. Chen, Y. Zou, Z. G. Gu, Z. Zhao, L. Shen, Chem. Commun. 2015, 51, 1677 – 1680;
dc.identifier.citedreferenceM. Kurmoo, Chem. Soc. Rev. 2009, 38, 1353 – 1379.
dc.identifier.citedreferenceC. Wang, D. Liu, W. Lin, J. Am. Chem. Soc. 2013, 135, 13222 – 13234.
dc.identifier.citedreferenceM. Tegoni, M. Remelli, Coord. Chem. Rev. 2012, 256, 289 – 315.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. Mezei, C. M. Zaleski, V. L. Pecoraro, Chem. Rev. 2007, 107, 4933 – 5003;
dc.identifier.citedreferenceC. Y. Chow, E. R. Trivedi, V. Pecoraro, C. M. Zaleski, Comments Inorg. Chem. 2015, 35, 214 – 253.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ.-W. Li, J.-L. Liu, J.-H. Jia, Y.-C. Chen, J. Liu, L.-F. Wang, M.-L. Tong, Chem. Commun. 2015, 51, 10291 – 10294;
dc.identifier.citedreferenceY. E. Cheon, J. Park, M. P. Suh, Chem. Commun. 2009, 5436 – 5438;
dc.identifier.citedreferenceC. Y. Chow, H. Bolvin, V. E. Campbell, R. Guillot, J. W. Kampf, W. Wernsdorfer, F. Gendron, J. Autschbach, V. L. Pecoraro, T. Mallah, Chem. Sci. 2015, 6, 4148 – 4159;
dc.identifier.citedreferenceA. Deb, T. T. Boron, M. Itou, Y. Sakurai, T. Mallah, V. L. Pecoraro, J. E. Penner-Hahn, J. Am. Chem. Soc. 2014, 136, 4889 – 4892;
dc.identifier.citedreferenceF. Cao, S. Wang, D. Li, S. Zeng, M. Niu, Y. Song, J. Dou, Inorg. Chem. 2013, 52, 10747 – 10755;
dc.identifier.citedreferenceC. M. Zaleski, S. Tricard, E. C. Depperman, W. Wernsdorfer, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2011, 50, 11348 – 11352;
dc.identifier.citedreferenceS. Wang, L. Kong, H. Yang, Z. He, Z. Jiang, D. Li, S. Zeng, M. Niu, Y. Song, J. Dou, Inorg. Chem. 2011, 50, 2705 – 2707;
dc.identifier.citedreferenceT. T. Boron, J. W. Kampf, V. L. Pecoraro, Inorg. Chem. 2010, 49, 9104 – 9106;
dc.identifier.citedreferenceC. M. Zaleski, J. W. Kampf, T. Mallah, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2007, 46, 1954 – 1956;
dc.identifier.citedreferenceC. M. Zaleski, E. C. Depperman, J. W. Kampf, M. L. Kirk, V. L. Pecoraro, Inorg. Chem. 2006, 45, 10022 – 10024.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. Jankolovits, C. M. Andolina, J. W. Kampf, K. N. Raymond, V. L. Pecoraro, Angew. Chem. Int. Ed. 2011, 50, 9660 – 9664; Angew. Chem. 2011, 123, 9834 – 9838;
dc.identifier.citedreferenceE. R. Trivedi, S. V. Eliseeva, J. Jankolovits, M. M. Olmstead, S. Petoud, V. L. Pecoraro, J. Am. Chem. Soc. 2014, 136, 1526 – 1534.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Tegoni, M. Remelli, D. Bacco, L. Marchiò, F. Dallavalle, Dalton Trans. 2008, 2693 – 2701;
dc.identifier.citedreferenceL. Marchiò, N. Marchetti, C. Atzeri, V. Borghesani, M. Remelli, M. Tegoni, Dalton Trans. 2015, 44, 3237 – 3250.
dc.identifier.citedreference 
dc.identifier.citedreferenceJ. J. Bodwin, V. L. Pecoraro, Inorg. Chem. 2000, 39, 3434 – 3435;
dc.identifier.citedreferenceA. B. Lago, J. Pasán, L. Cañadillas-Delgado, O. Fabelo, F. J. M. Casado, M. Julve, F. Lloret, C. Ruiz-Pérez, New J. Chem. 2011, 35, 1817 – 1822.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. McDonald, T. Whyte, S. M. Taylor, S. Sanz, E. K. Brechin, D. Gaynor, L. F. Jones, CrystEngComm 2013, 15, 6672 – 6681;
dc.identifier.citedreferenceA. V. Pavlishchuk, S. V. Kolotilov, M. Zeller, L. K. Thompson, A. W. Addison, Inorg. Chem. 2014, 53, 1320 – 1330.
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Moon, I. Kim, M. S. Lah, Inorg. Chem. 2000, 39, 2710 – 2711;
dc.identifier.citedreferenceK. Wang, H.-H. Zou, Z.-L. Chen, Z. Zhang, W.-Y. Sun, F.-P. Liang, Dalton Trans. 2014, 43, 12989 – 12995;
dc.identifier.citedreferenceL. Han, L. Qin, X. Z. Yan, L. P. Xu, J. Sun, L. Yu, H. B. Chen, X. Zou, Cryst. Growth Des. 2013, 13, 1807 – 1811;
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.