Show simple item record

Bottomâ up vs reactive sintering of Al2O3â YAGâ YSZ composites via one or threeâ phase nanoparticles (NPs). Bottomâ up processing wins this time

dc.contributor.authorTaylor, Nathan J.
dc.contributor.authorStangeland‐molo, Sandra
dc.contributor.authorLaine, Richard M.
dc.date.accessioned2017-06-16T20:16:31Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-06
dc.identifier.citationTaylor, Nathan J.; Stangeland‐molo, Sandra ; Laine, Richard M. (2017). "Bottomâ up vs reactive sintering of Al2O3â YAGâ YSZ composites via one or threeâ phase nanoparticles (NPs). Bottomâ up processing wins this time." Journal of the American Ceramic Society 100(6): 2429-2438.
dc.identifier.issn0002-7820
dc.identifier.issn1551-2916
dc.identifier.urihttps://hdl.handle.net/2027.42/137592
dc.description.abstractThe bottomâ up approach describes the synthesis of bulk materials from the finest possible length scales to obtain the best global properties. This approach was adapted to the synthesis of multiâ phase ceramic composites produced from metal oxides produced by liquidâ feed flame spray pyrolysis (LFâ FSP). The effect of length scale of mixing was tested through two processing schemes, mixed single metalâ oxide nanopowders (NPs) and nanocomposite NPs having the desired composition within single particles. For the Al2O3â Y2O3â ZrO2 ternary system, composites prepared from nanostructured nanoparticles sinter to finer grain sizes (<410 nm) at equivalent densities of 95%TD than those prepared from mixed nanoparticle processing. These contrast with our previous studies in this area where mixed NP processing gave the best or equivalent results. The nanocomposite NPs produced in this study exhibit novel nanostructures with three phases contained within single particles <26 nm average particle size (APS). This nanostructure may directly explain the enhanced sintering of the nanocomposite NPs and may provide an impetus for future synthesis of similarly structured NPs.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otheryttrium aluminum garnet
dc.subject.otherreaction sintering
dc.subject.othernanoparticles
dc.subject.othercomposites
dc.titleBottomâ up vs reactive sintering of Al2O3â YAGâ YSZ composites via one or threeâ phase nanoparticles (NPs). Bottomâ up processing wins this time
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137592/1/jace14761.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137592/2/jace14761_am.pdf
dc.identifier.doi10.1111/jace.14761
dc.identifier.sourceJournal of the American Ceramic Society
dc.identifier.citedreferenceEster FJ, Larrea A, Merino RI. Processing and microstructural study of surface laser remelted Al 2 O 3 â YSZâ YAG eutectic plates. J Eur Ceram Soc. 2011; 31: 1257 â 1268.
dc.identifier.citedreferenceTaylor NJ, Pottebaum AJ, Uz V, Laine RM. The bottom up approach is not always the best processing method. Dense αâ Al 2 O 3 /NiAl 2 O 4 composites. Adv Functional Mater. 2014; 24: 3392 â 3398.
dc.identifier.citedreferenceTaylor NJ, Laine RM. Bottom up processing is not always optimal. YAG tubes. Adv Funct Mater. 2014; 24: 1125 â 1132.
dc.identifier.citedreferenceMarchal J, John T, Baranwal R, Hinklin T, Laine RM. Yttrium aluminum garnet NPs produced by liquidâ feed flame spray pyrolysis (LFâ FSP) of metalloorganic precursors. Chem Mater. 2004; 16: 822 â 831.
dc.identifier.citedreferenceHinklin T, Toury B, Gervais C, et al. Liquidâ feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater. 2004; 16: 21 â 30.
dc.identifier.citedreferenceGleiter H. The mechanism of grain boundary migration. Acta Metall. 1969; 5: 565 â 573.
dc.identifier.citedreferenceEvans B, Renner J, Hirth G. A few remarks on the kinetics of static grain growth in rocks. Intl J Earth Sci. 2001; 90: 88 â 103.
dc.identifier.citedreferenceNes E, Ryum N, Hunderi O. On the Zener drag. Acta Metall. 1985; 33: 11 â 22.
dc.identifier.citedreferenceMen D, Mecartney ML. Superplasticity and machinability in a fourâ phase ceramic. Mater Res Bull. 2012; 47: 1925 â 1931.
dc.identifier.citedreferenceLarrea A, Orera VM, Merino RI, Peña JI. Microstructure and mechanical properties of Al 2 O 3 â YSZ and Al 2 O 3 â YAG directionally solidified eutectic plates. J Eur Ceram Soc. 2005; 25: 1419 â 1429.
dc.identifier.citedreferenceSu H, Zhang J, Yu J, Liu L, Fu H. Rapid solidification and fracture behavior of ternary metastable eutectic Al 2 O 3 /YAG/YSZ in situ composite ceramic. Mater Sci Eng: A. 2011; 528: 1967 â 1973.
dc.identifier.citedreferenceCalderonâ Moreno JM, Yoshimura M. Al 2 O 3 â Y 3 Al 5 O 12 (YAG)â ZrO 2 ternary composite rapidly solidified from the eutectic melt. J Eur Ceram Soc. 2005; 25: 1365 â 1368.
dc.identifier.citedreferenceOliete PB, Peña JI, Larrea A, et al. Ultraâ highâ strength nanofibrillar Al 2 O 3 â YAGâ YSZ eutectics. Adv Mater 2007; 19: 2313 â 2318.
dc.identifier.citedreferencePalmero P, Pulci G, Marra F, Valente T, Montanaro L. Al 2 O 3 /ZrO 2 /Y 3 Al 5 O 12 composites: A highâ temperature mechanical characterization. Materials. 2015; 8: 611 â 624.
dc.identifier.citedreferenceOelgardt C, Anderson J, Heinrich JG, Messing GL. Sintering, microstructure and mechanical properties of Al 2 O 3 â Y 2 O 3 â ZrO 2 (AYZ) eutectic composition ceramic microcomposites. J Eur Ceram Soc. 2010; 30: 649 â 656.
dc.identifier.citedreferenceKim Dâ K, Kriven WM. Processing and characterization of multiphase ceramic composites Part II: triplex composites with a wide sintering temperature range. J Am Ceram Soc. 2008; 91: 793 â 798.
dc.identifier.citedreferenceSim Sâ M, Keller KA, Mah Tâ I. Phase formation in yttrium aluminum garnet powders synthesized by chemical methods. J Mater Sci. 2000; 35: 713 â 717.
dc.identifier.citedreferenceYi DK, Lee SS, Papaefthymiou GC, Ying JY. Nanoparticle architectures templated by SiO 2 /Fe 2 O 3 nanocomposites. Chem Mater. 2006; 18: 614 â 619.
dc.identifier.citedreferencePerro A, Reculusa S, Ravaine S, Bourgeatâ Lami E, Duguet E. Design and synthesis of Janus microâ and nanoparticles. J Mater Chem. 2005; 15: 3745 â 3760.
dc.identifier.citedreferenceLevin I, Brandon D. Metastable alumina polymorphs: crystal structures and transition sequences. J Am Ceram Soc. 1998; 81: 1995 â 2012.
dc.identifier.citedreferenceMendelson MI. Average grain size in polycrystalline ceramics. J Am Ceram Soc. 1969; 52: 443 â 446.
dc.identifier.citedreferenceLieber CM. Nanoscale science and technology: building a big future from small things. MRS Bull. 2003; 28: 486 â 488.
dc.identifier.citedreferenceZhi L, Mullen K. A bottomâ up approach from molecular nanographenes to unconventional carbon materials. J Mater Chem. 2008; 18: 1472 â 1484.
dc.identifier.citedreferenceMurugavel R, Walawalkar HG, Dan M, Roesky HW, Rao CNR. Acc Chem Res. 2004; 37: 763 â 767.
dc.identifier.citedreferenceHubertâ Pfalzgraf LG. To what extent can design of molecular precursors control the preparation of high tech oxides? J Mater Chem. 2004; 14: 3113 â 3123.
dc.identifier.citedreferenceLu W, Lieber CM. Nanoelectronics from the bottom up. Nat Mater. 2007; 6: 841 â 850.
dc.identifier.citedreferenceBinner J, Vaidhyanathan B. Processing of bulk nanostructured ceramics. J Eur Ceram Soc. 2008; 28: 1329 â 1339.
dc.identifier.citedreferenceRamaseshan R, Sundarrajan S, Jose R, Ramakrishna S. Nanostructured ceramics by electrospinning. J App Phys. 2007; 102: 111101.
dc.identifier.citedreferenceKomarneni S. Nanocomposites. J Mater Chem. 1992; 2: 1219 â 1230.
dc.identifier.citedreferenceBrinker CJ, Scherer G. Solâ Gel Science. New York City, New York: Academic Press; 1991.
dc.identifier.citedreferenceLivage J, Henry M, Sanchez C. Solâ gel chemistry of transition metalâ oxides. Prog Solid State Chem. 1988; 18: 259 â 341.
dc.identifier.citedreferenceLaine RM, Babonneau F. Preceramic polymer routes to silicon carbide. Chem Mat. 1993; 5: 260 â 279.
dc.identifier.citedreferenceLaine RM, Sellinger A, Siâ containing ceramic precursors. In: Rappoport Z, Apeloig Y, eds. The Chemistry of Organic Silicon Compounds. Vol. 2, London: J. Wiley & Sons Ltd.; 1998: 2245 â 2310.
dc.identifier.citedreferenceHinklin TR, Azurdia J, Kim M, Marchal JC, Kumar S, Laine RM. Finding spinel in all the wrong places. Adv Mater. 2008; 20: 1373 â 1375.
dc.identifier.citedreferenceKim M, Laine RM. Pressureless sintering tâ zirconia@δâ Al 2 O 3 (54 mol%) coreâ shell NPs at 1120°C provides dense tâ zirconiaâ toughened αâ Al 2 O 3 nanocomposites. J Am Ceram Soc. 2010; 93: 709 â 715.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.