Show simple item record

Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions

dc.contributor.authorDine, Tharwat Mohy El
dc.contributor.authorEvans, David
dc.contributor.authorRouden, Jacques
dc.contributor.authorBlanchet, Jérôme
dc.date.accessioned2017-06-16T20:16:42Z
dc.date.available2017-06-16T20:16:42Z
dc.date.issued2016-04-18
dc.identifier.citationDine, Tharwat Mohy El; Evans, David; Rouden, Jacques; Blanchet, Jérôme (2016). "Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions." Chemistry – A European Journal 22(17): 5894-5898.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/137604
dc.description.abstractA highly efficient and mild transamidation of amides with amines co‐catalysed by borinic acid and acetic acid has been reported. A wide range of functionalised formamides was synthesized in excellent yields, including important chiral α‐amino acid derivatives, with minor racemisation being observed. Experiments suggested that the reaction rely on a cooperative catalysis involving an enhanced boron‐derived Lewis acidity rather than an improved Brønsted acidity of acetic acid.Amide bonds are reputedly difficult to activate due to their high resonance stabilization. An unusual mild activation of dimethylformamide and formamide by borinic acid 1 (see scheme), illustrated by a general formylation of a wide range of amines, including chiral α‐amino esters, has been reported.
dc.publisherWiley
dc.subject.othertransamidation
dc.subject.othersynthetic methods
dc.subject.otherboronic acid
dc.subject.otheramines
dc.subject.otheramides
dc.titleFormamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137604/1/chem201600234-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137604/2/chem201600234_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137604/3/chem201600234.pdf
dc.identifier.doi10.1002/chem.201600234
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceJ. B. Gilbert, V. E. Price, J. P. Greenstein, J. Biol. Chem. 1949, 180, 209 – 218;
dc.identifier.citedreference 
dc.identifier.citedreferenceT. Mohy El Dine, W. Erb, Y. Berhault, J. Blanchet, J. Rouden, J. Org. Chem. 2015, 80, 4532 – 4544;
dc.identifier.citedreferenceT. Mohy El Dine, J. Rouden, J. Blanchet, Chem. Commun. 2015, 51, 16084 – 16087.
dc.identifier.citedreferenceUnder the conditions reported in Table 1, entry 1, benzyl acetamide resulting from the condensation of benzylamine and acetic acid was not observed, neither by TLC nor 1 H NMR.
dc.identifier.citedreferenceFor further details on optimisation, refer to the Supporting Information. Decreasing the catalyst loading of borinic acid 1 to 5 mol % led to a slightly lower yield, whereas decreasing the acetic acid/borinic acid 1 ratio from 2:1 to 1:1 significantly lowered the yield of the reaction.
dc.identifier.citedreferenceFor reviews:
dc.identifier.citedreferenceH. Ishibashi, K. Ishihara, H. Yamamoto, Chem. Rec. 2002, 2, 177 – 188;
dc.identifier.citedreferenceH. Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed. 2005, 44, 1924 – 1942; Angew. Chem. 2005, 117, 1958 – 1977. For a recent example with BBr 3 as a Lewis acid co-catalyst, see:
dc.identifier.citedreferenceM. Hatano, Y. Goto, A. Izumiseki, M. Akakura, K. Ishihara, J. Am. Chem. Soc. 2015, 137, 13472 – 13475.
dc.identifier.citedreferenceSee the Supporting Information.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. Kliegel, G. Lubkowitz, J. O. Pokriefke, S. J. Rettig, J. Trotter, Can. J. Chem. 2000, 78, 1325 – 1344;
dc.identifier.citedreferenceJ. M. Blackwell, W. E. Piers, M. Parvez, Org. Lett. 2000, 2, 695 – 698.
dc.identifier.citedreferenceIsolated examples can be found in Ref. [7b–d] and [8f]. For a specific study, see: Ref. [10f]. In the latter report, benzylamine was found surprisingly less reactive than various α-amino esters.
dc.identifier.citedreferenceReaction conditions: Borinic acid 1 (10 mol %), acetic acid (20 mol %) and DMF at 85 °C for 24 h.
dc.identifier.citedreferenceWith the same substrate, conditions used in Ref. [20] led to a partially racemised five-membered lactam in a low yield of 30 % by an intramolecular cyclisation.
dc.identifier.citedreferenceFor an interesting catalyst and solvent-free transamidation of formamide at higher temperature, see: T. Lebleu, H. Kotsuki, J. Maddaluno, J. Legros, Tetrahedron Lett. 2014, 55, 362 – 364.
dc.identifier.citedreferenceFor optimisation details, see the Supporting Information.
dc.identifier.citedreferenceS. K. Guchhait, G. Priyadarshani, V. Chaudhary, D. R. Seladiya, T. M. Shah, N. P. Bhogayta, RSC Adv. 2013, 3, 10867 – 10874.
dc.identifier.citedreferenceS. M. Creedon, H. K. Crowley, D. G. McCarthy, J. Chem. Soc. Perkin Trans. 1 1998, 1015 – 1018.
dc.identifier.citedreferenceFor selected examples:
dc.identifier.citedreferenceR. A. Forsch, A. Rosowsky, J. Org. Chem. 1985, 50, 2582 – 2583;
dc.identifier.citedreferenceR. Hett, Q. K. Fang, Y. Gao, S. A. Wald, C. H. Senanayake, Org. Process Res. Dev. 1998, 2, 96 – 99;
dc.identifier.citedreferenceG. Ma, M. Zancanella, Y. Oyola, R. D. Richardson, J. W. Smith, D. Romo, Org. Lett. 2006, 8, 4497 – 4500.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Jackson, O. J. Meth-Cohn, Chem. Soc. Chem. Commun. 1995, 1319;
dc.identifier.citedreferenceB. C. Chen, M. S. Bednarz, R. Zhao, J. E. Sundeen, P. Chen, Z. Shen, A. P. Skoumbourdis, J. C. Barrish, Tetrahedron Lett. 2000, 41, 5453 – 5456.
dc.identifier.citedreference 
dc.identifier.citedreferenceI. Ugi, U. Fetzer, U. Eholzer, H. Knupfer, K. Offermann, Angew. Chem. Int. Ed. Engl. 1965, 4, 472 – 484; Angew. Chem. 1965, 77, 492 – 504. For recent methodologies, see:
dc.identifier.citedreferenceM. Keita, M. Vandamme, O. Mahe, J.-F. Paquin, Tetrahedron Lett. 2015, 56, 461 – 464;
dc.identifier.citedreferenceX. Wang, Q.-G. Wang, Q.-L. Luo, Synthesis 2015, 49 – 54;
dc.identifier.citedreferenceY. Han, L. Cai, Tetrahedron Lett. 1997, 38, 5423 – 5426.
dc.identifier.citedreferenceFor allylation reactions, see:
dc.identifier.citedreferenceK. Iseki, S. Mizuno, Y. Kuroki, Y. Kobayashi, Tetrahedron 1999, 55, 977 – 988;
dc.identifier.citedreferenceS. B. Jagtap, S. B. Tsogoeva, Chem. Commun. 2006, 4747 – 4749;
dc.identifier.citedreferenceC. Baudequin, D. Chaturvedi, S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 2623 – 2629. For a review on imine hydrosilylation, see:
dc.identifier.citedreferenceS. Jones, C. J. A. Warner, Org. Biomol. Chem. 2012, 10, 2189 – 2200. See also
dc.identifier.citedreferenceZ. Wang, S. Wei, C. Wang, J. Sun, Tetrahedron: Asymmetry 2007, 18, 705 – 709.
dc.identifier.citedreferenceFor bisformamide-catalysed Strecker reaction, see:
dc.identifier.citedreferenceY. Wen, Y. Xiong, L. Chang, J. Huang, X. Liu, X. Feng, J. Org. Chem. 2007, 72, 7715 – 7719. For N -formyl/proline-catalysed epoxide ring opening and sulfide oxidation, see:
dc.identifier.citedreferenceS. Wei, K. A. Stingl, K. M. Weiß, S. B. Tsogoeva, Synlett 2010, 707 – 711.
dc.identifier.citedreferenceP. G. M. Wuts, T. Greene, Greene’s Protective Groups in Organic Synthesis, 4 th ed., Wiley, Hoboken, 2007, 774 – 775.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. J. Gerack, L. McElwee-White, Molecules 2014, 19, 7689 – 7713. See also:
dc.identifier.citedreferenceM. Lei, L. Ma, L. Hu, Tetrahedron Lett. 2010, 51, 4186 – 4188;
dc.identifier.citedreferenceS. Majumdar, J. De, J. Hossain, A. Basak, Tetrahedron Lett. 2013, 54, 262 – 266;
dc.identifier.citedreferenceJ.-G. Kim, D. Jang, Synlett 2010, 2093 – 2096.
dc.identifier.citedreference 
dc.identifier.citedreferenceN. Ortega, C. Richter, F. Glorius, Org. Lett. 2013, 15, 1776 – 1779;
dc.identifier.citedreferenceS. Tanaka, T. Minato, E. Ito, M. Hara, Y. Kim, Y. Yamamoto, N. Asao, Chem. Eur. J. 2013, 19, 11832 – 11836;
dc.identifier.citedreferenceB. Kang, S. H. Hong, Adv. Synth. Catal. Adv. Synth. Cat. 2015, 357, 834 – 840;
dc.identifier.citedreferenceX. Li, K. Liu, X. Xu, L. Ma, H. Wang, D. Jiang, Q. Zhang, C. Lu, Chem. Commun. 2011, 47, 7860 – 7862;
dc.identifier.citedreferenceW. Li, X.-F. Wu, Chem. Eur. J. 2015, 21, 14943 – 14948;
dc.identifier.citedreferenceT. V. Q. Nguyen, W.-J. Yoo, S. Kobayashi, Angew. Chem. Int. Ed. 2015, 54, 9209 – 9212; Angew. Chem. 2015, 127, 9341 – 9344;
dc.identifier.citedreferenceL. Zhang, Z. Han, X. Zhao, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2015, 54, 6186 – 6189; Angew. Chem. 2015, 127, 6284 – 6287;
dc.identifier.citedreferenceX. Cui, Y. Zhang, Y. Deng, F. Shi, Chem. Commun. 2014, 50, 189 – 191;
dc.identifier.citedreferenceS. Kumar, S. L. Jain, RSC Adv. 2014, 4, 64277 – 64279.
dc.identifier.citedreferenceFor key references on transamidation, see:
dc.identifier.citedreferenceT. A. Dineen, A. Zajac, A. G. Myers, J. Am. Chem. Soc. 2006, 128, 16406 – 16409;
dc.identifier.citedreferenceN. A. Stephenson, J. Zhu, S. H. Gellman, S. S. Stahl, J. Am. Chem. Soc. 2009, 131, 10003 – 10008;
dc.identifier.citedreferenceM. Zhang, S. Imm, S. Bahn, L. Neubert, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2012, 51, 3905 – 3909; Angew. Chem. 2012, 124, 3971 – 3975. For a recent review:
dc.identifier.citedreferenceR. M. Lanigan, T. D. Sheppard, Eur. J. Org. Chem. 2013, 7453 – 7465.
dc.identifier.citedreferenceRecent transamidation mediated with NH 2 OH⋅HCl
dc.identifier.citedreferenceC. L. Allen, B. N. Atkinson, J. M. J. Williams, Angew. Chem. Int. Ed. 2012, 51, 1383 – 1386; Angew. Chem. 2012, 124, 1412 – 1415. [Cp 2 ZrCl 2 ]
dc.identifier.citedreferenceB. N. Atkinson, A. R. Chhatwal, H. V. Lomax, J. W. Walton, J. M. Williams, Chem. Commun. 2012, 48, 11626 – 11628. Fe(NO 3 ) 3 ⋅9 H 2 O
dc.identifier.citedreferenceL. Becerra-Figueroa, A. Ojeda-Porras, D. Gamba-Sánchez, J. Org. Chem. 2014, 79, 4544 – 4552. L -proline:
dc.identifier.citedreferenceS. N. Rao, D. C. Mohan, S. Adimurthy, Org. Lett. 2013, 15, 1496 – 1499. PhI(OAc) 2:
dc.identifier.citedreferenceR. Vanjari, B. K. Allam, K. N. Singh, RSC Adv. 2013, 3, 1691 – 1694. Imidazole
dc.identifier.citedreferenceM. Suchý, A. A. H. Elmehriki, R. H. E. Hudson, Org. Lett. 2011, 13, 3952 – 3955. It is known that nucleophilic amines undergo direct transamidation with DMF at very high temperatures, see: M. A. Kraus, Synthesis 1973, 361 – 362.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. B. Nguyen, J. Sorres, M. Q. Tran, L. Ermolenko, A. Al-Mourabit, Org. Lett. 2012, 14, 3202 – 3205;
dc.identifier.citedreferenceR. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78, 4512 – 4523;
dc.identifier.citedreferenceP. Starkov, T. D. Sheppard, Org. Biomol. Chem. 2011, 9, 1320 – 1323.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. B. Martin, A. Parcell, R. I. Hedrick, J. Am. Chem. Soc. 1964, 86, 2406 – 2413.
dc.identifier.citedreferenceIn ref. [11a], benzylamine was found to react at room temperature. However, other examples, including primary alkyl amines and anilines, required significantly higher temperatures (100–150 °C).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.