Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions
dc.contributor.author | Dine, Tharwat Mohy El | |
dc.contributor.author | Evans, David | |
dc.contributor.author | Rouden, Jacques | |
dc.contributor.author | Blanchet, Jérôme | |
dc.date.accessioned | 2017-06-16T20:16:42Z | |
dc.date.available | 2017-06-16T20:16:42Z | |
dc.date.issued | 2016-04-18 | |
dc.identifier.citation | Dine, Tharwat Mohy El; Evans, David; Rouden, Jacques; Blanchet, Jérôme (2016). "Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions." Chemistry – A European Journal 22(17): 5894-5898. | |
dc.identifier.issn | 0947-6539 | |
dc.identifier.issn | 1521-3765 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/137604 | |
dc.description.abstract | A highly efficient and mild transamidation of amides with amines co‐catalysed by borinic acid and acetic acid has been reported. A wide range of functionalised formamides was synthesized in excellent yields, including important chiral α‐amino acid derivatives, with minor racemisation being observed. Experiments suggested that the reaction rely on a cooperative catalysis involving an enhanced boron‐derived Lewis acidity rather than an improved Brønsted acidity of acetic acid.Amide bonds are reputedly difficult to activate due to their high resonance stabilization. An unusual mild activation of dimethylformamide and formamide by borinic acid 1 (see scheme), illustrated by a general formylation of a wide range of amines, including chiral α‐amino esters, has been reported. | |
dc.publisher | Wiley | |
dc.subject.other | transamidation | |
dc.subject.other | synthetic methods | |
dc.subject.other | boronic acid | |
dc.subject.other | amines | |
dc.subject.other | amides | |
dc.title | Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Chemistry | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/137604/1/chem201600234-sup-0001-misc_information.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/137604/2/chem201600234_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/137604/3/chem201600234.pdf | |
dc.identifier.doi | 10.1002/chem.201600234 | |
dc.identifier.source | Chemistry – A European Journal | |
dc.identifier.citedreference | J. B. Gilbert, V. E. Price, J. P. Greenstein, J. Biol. Chem. 1949, 180, 209 – 218; | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | T. Mohy El Dine, W. Erb, Y. Berhault, J. Blanchet, J. Rouden, J. Org. Chem. 2015, 80, 4532 – 4544; | |
dc.identifier.citedreference | T. Mohy El Dine, J. Rouden, J. Blanchet, Chem. Commun. 2015, 51, 16084 – 16087. | |
dc.identifier.citedreference | Under the conditions reported in Table 1, entry 1, benzyl acetamide resulting from the condensation of benzylamine and acetic acid was not observed, neither by TLC nor 1 H NMR. | |
dc.identifier.citedreference | For further details on optimisation, refer to the Supporting Information. Decreasing the catalyst loading of borinic acid 1 to 5 mol % led to a slightly lower yield, whereas decreasing the acetic acid/borinic acid 1 ratio from 2:1 to 1:1 significantly lowered the yield of the reaction. | |
dc.identifier.citedreference | For reviews: | |
dc.identifier.citedreference | H. Ishibashi, K. Ishihara, H. Yamamoto, Chem. Rec. 2002, 2, 177 – 188; | |
dc.identifier.citedreference | H. Yamamoto, K. Futatsugi, Angew. Chem. Int. Ed. 2005, 44, 1924 – 1942; Angew. Chem. 2005, 117, 1958 – 1977. For a recent example with BBr 3 as a Lewis acid co-catalyst, see: | |
dc.identifier.citedreference | M. Hatano, Y. Goto, A. Izumiseki, M. Akakura, K. Ishihara, J. Am. Chem. Soc. 2015, 137, 13472 – 13475. | |
dc.identifier.citedreference | See the Supporting Information. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | W. Kliegel, G. Lubkowitz, J. O. Pokriefke, S. J. Rettig, J. Trotter, Can. J. Chem. 2000, 78, 1325 – 1344; | |
dc.identifier.citedreference | J. M. Blackwell, W. E. Piers, M. Parvez, Org. Lett. 2000, 2, 695 – 698. | |
dc.identifier.citedreference | Isolated examples can be found in Ref. [7b–d] and [8f]. For a specific study, see: Ref. [10f]. In the latter report, benzylamine was found surprisingly less reactive than various α-amino esters. | |
dc.identifier.citedreference | Reaction conditions: Borinic acid 1 (10 mol %), acetic acid (20 mol %) and DMF at 85 °C for 24 h. | |
dc.identifier.citedreference | With the same substrate, conditions used in Ref. [20] led to a partially racemised five-membered lactam in a low yield of 30 % by an intramolecular cyclisation. | |
dc.identifier.citedreference | For an interesting catalyst and solvent-free transamidation of formamide at higher temperature, see: T. Lebleu, H. Kotsuki, J. Maddaluno, J. Legros, Tetrahedron Lett. 2014, 55, 362 – 364. | |
dc.identifier.citedreference | For optimisation details, see the Supporting Information. | |
dc.identifier.citedreference | S. K. Guchhait, G. Priyadarshani, V. Chaudhary, D. R. Seladiya, T. M. Shah, N. P. Bhogayta, RSC Adv. 2013, 3, 10867 – 10874. | |
dc.identifier.citedreference | S. M. Creedon, H. K. Crowley, D. G. McCarthy, J. Chem. Soc. Perkin Trans. 1 1998, 1015 – 1018. | |
dc.identifier.citedreference | For selected examples: | |
dc.identifier.citedreference | R. A. Forsch, A. Rosowsky, J. Org. Chem. 1985, 50, 2582 – 2583; | |
dc.identifier.citedreference | R. Hett, Q. K. Fang, Y. Gao, S. A. Wald, C. H. Senanayake, Org. Process Res. Dev. 1998, 2, 96 – 99; | |
dc.identifier.citedreference | G. Ma, M. Zancanella, Y. Oyola, R. D. Richardson, J. W. Smith, D. Romo, Org. Lett. 2006, 8, 4497 – 4500. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | A. Jackson, O. J. Meth-Cohn, Chem. Soc. Chem. Commun. 1995, 1319; | |
dc.identifier.citedreference | B. C. Chen, M. S. Bednarz, R. Zhao, J. E. Sundeen, P. Chen, Z. Shen, A. P. Skoumbourdis, J. C. Barrish, Tetrahedron Lett. 2000, 41, 5453 – 5456. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | I. Ugi, U. Fetzer, U. Eholzer, H. Knupfer, K. Offermann, Angew. Chem. Int. Ed. Engl. 1965, 4, 472 – 484; Angew. Chem. 1965, 77, 492 – 504. For recent methodologies, see: | |
dc.identifier.citedreference | M. Keita, M. Vandamme, O. Mahe, J.-F. Paquin, Tetrahedron Lett. 2015, 56, 461 – 464; | |
dc.identifier.citedreference | X. Wang, Q.-G. Wang, Q.-L. Luo, Synthesis 2015, 49 – 54; | |
dc.identifier.citedreference | Y. Han, L. Cai, Tetrahedron Lett. 1997, 38, 5423 – 5426. | |
dc.identifier.citedreference | For allylation reactions, see: | |
dc.identifier.citedreference | K. Iseki, S. Mizuno, Y. Kuroki, Y. Kobayashi, Tetrahedron 1999, 55, 977 – 988; | |
dc.identifier.citedreference | S. B. Jagtap, S. B. Tsogoeva, Chem. Commun. 2006, 4747 – 4749; | |
dc.identifier.citedreference | C. Baudequin, D. Chaturvedi, S. B. Tsogoeva, Eur. J. Org. Chem. 2007, 2623 – 2629. For a review on imine hydrosilylation, see: | |
dc.identifier.citedreference | S. Jones, C. J. A. Warner, Org. Biomol. Chem. 2012, 10, 2189 – 2200. See also | |
dc.identifier.citedreference | Z. Wang, S. Wei, C. Wang, J. Sun, Tetrahedron: Asymmetry 2007, 18, 705 – 709. | |
dc.identifier.citedreference | For bisformamide-catalysed Strecker reaction, see: | |
dc.identifier.citedreference | Y. Wen, Y. Xiong, L. Chang, J. Huang, X. Liu, X. Feng, J. Org. Chem. 2007, 72, 7715 – 7719. For N -formyl/proline-catalysed epoxide ring opening and sulfide oxidation, see: | |
dc.identifier.citedreference | S. Wei, K. A. Stingl, K. M. Weiß, S. B. Tsogoeva, Synlett 2010, 707 – 711. | |
dc.identifier.citedreference | P. G. M. Wuts, T. Greene, Greene’s Protective Groups in Organic Synthesis, 4 th ed., Wiley, Hoboken, 2007, 774 – 775. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | C. J. Gerack, L. McElwee-White, Molecules 2014, 19, 7689 – 7713. See also: | |
dc.identifier.citedreference | M. Lei, L. Ma, L. Hu, Tetrahedron Lett. 2010, 51, 4186 – 4188; | |
dc.identifier.citedreference | S. Majumdar, J. De, J. Hossain, A. Basak, Tetrahedron Lett. 2013, 54, 262 – 266; | |
dc.identifier.citedreference | J.-G. Kim, D. Jang, Synlett 2010, 2093 – 2096. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | N. Ortega, C. Richter, F. Glorius, Org. Lett. 2013, 15, 1776 – 1779; | |
dc.identifier.citedreference | S. Tanaka, T. Minato, E. Ito, M. Hara, Y. Kim, Y. Yamamoto, N. Asao, Chem. Eur. J. 2013, 19, 11832 – 11836; | |
dc.identifier.citedreference | B. Kang, S. H. Hong, Adv. Synth. Catal. Adv. Synth. Cat. 2015, 357, 834 – 840; | |
dc.identifier.citedreference | X. Li, K. Liu, X. Xu, L. Ma, H. Wang, D. Jiang, Q. Zhang, C. Lu, Chem. Commun. 2011, 47, 7860 – 7862; | |
dc.identifier.citedreference | W. Li, X.-F. Wu, Chem. Eur. J. 2015, 21, 14943 – 14948; | |
dc.identifier.citedreference | T. V. Q. Nguyen, W.-J. Yoo, S. Kobayashi, Angew. Chem. Int. Ed. 2015, 54, 9209 – 9212; Angew. Chem. 2015, 127, 9341 – 9344; | |
dc.identifier.citedreference | L. Zhang, Z. Han, X. Zhao, Z. Wang, K. Ding, Angew. Chem. Int. Ed. 2015, 54, 6186 – 6189; Angew. Chem. 2015, 127, 6284 – 6287; | |
dc.identifier.citedreference | X. Cui, Y. Zhang, Y. Deng, F. Shi, Chem. Commun. 2014, 50, 189 – 191; | |
dc.identifier.citedreference | S. Kumar, S. L. Jain, RSC Adv. 2014, 4, 64277 – 64279. | |
dc.identifier.citedreference | For key references on transamidation, see: | |
dc.identifier.citedreference | T. A. Dineen, A. Zajac, A. G. Myers, J. Am. Chem. Soc. 2006, 128, 16406 – 16409; | |
dc.identifier.citedreference | N. A. Stephenson, J. Zhu, S. H. Gellman, S. S. Stahl, J. Am. Chem. Soc. 2009, 131, 10003 – 10008; | |
dc.identifier.citedreference | M. Zhang, S. Imm, S. Bahn, L. Neubert, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2012, 51, 3905 – 3909; Angew. Chem. 2012, 124, 3971 – 3975. For a recent review: | |
dc.identifier.citedreference | R. M. Lanigan, T. D. Sheppard, Eur. J. Org. Chem. 2013, 7453 – 7465. | |
dc.identifier.citedreference | Recent transamidation mediated with NH 2 OH⋅HCl | |
dc.identifier.citedreference | C. L. Allen, B. N. Atkinson, J. M. J. Williams, Angew. Chem. Int. Ed. 2012, 51, 1383 – 1386; Angew. Chem. 2012, 124, 1412 – 1415. [Cp 2 ZrCl 2 ] | |
dc.identifier.citedreference | B. N. Atkinson, A. R. Chhatwal, H. V. Lomax, J. W. Walton, J. M. Williams, Chem. Commun. 2012, 48, 11626 – 11628. Fe(NO 3 ) 3 ⋅9 H 2 O | |
dc.identifier.citedreference | L. Becerra-Figueroa, A. Ojeda-Porras, D. Gamba-Sánchez, J. Org. Chem. 2014, 79, 4544 – 4552. L -proline: | |
dc.identifier.citedreference | S. N. Rao, D. C. Mohan, S. Adimurthy, Org. Lett. 2013, 15, 1496 – 1499. PhI(OAc) 2: | |
dc.identifier.citedreference | R. Vanjari, B. K. Allam, K. N. Singh, RSC Adv. 2013, 3, 1691 – 1694. Imidazole | |
dc.identifier.citedreference | M. Suchý, A. A. H. Elmehriki, R. H. E. Hudson, Org. Lett. 2011, 13, 3952 – 3955. It is known that nucleophilic amines undergo direct transamidation with DMF at very high temperatures, see: M. A. Kraus, Synthesis 1973, 361 – 362. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | T. B. Nguyen, J. Sorres, M. Q. Tran, L. Ermolenko, A. Al-Mourabit, Org. Lett. 2012, 14, 3202 – 3205; | |
dc.identifier.citedreference | R. M. Lanigan, P. Starkov, T. D. Sheppard, J. Org. Chem. 2013, 78, 4512 – 4523; | |
dc.identifier.citedreference | P. Starkov, T. D. Sheppard, Org. Biomol. Chem. 2011, 9, 1320 – 1323. | |
dc.identifier.citedreference | ||
dc.identifier.citedreference | R. B. Martin, A. Parcell, R. I. Hedrick, J. Am. Chem. Soc. 1964, 86, 2406 – 2413. | |
dc.identifier.citedreference | In ref. [11a], benzylamine was found to react at room temperature. However, other examples, including primary alkyl amines and anilines, required significantly higher temperatures (100–150 °C). | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.