Show simple item record

Thermoset Shape‐Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation

dc.contributor.authorZheng, Ning
dc.contributor.authorFang, Zizheng
dc.contributor.authorZou, Weike
dc.contributor.authorZhao, Qian
dc.contributor.authorXie, Tao
dc.date.accessioned2017-06-16T20:16:54Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09-12
dc.identifier.citationZheng, Ning; Fang, Zizheng; Zou, Weike; Zhao, Qian; Xie, Tao (2016). "Thermoset Shape‐Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation." Angewandte Chemie International Edition 55(38): 11421-11425.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/137615
dc.description.abstractThermoset polymers are known for their superior thermomechanical properties, but the chemical crosslinking typically leads to intractability. This is reflected in the great differences between thermoset and thermoplastic shape‐memory polymers; the former exhibit a robust shape memory but are not capable of redefining the permanent shape. Contrary to current knowledge, we reveal here that a classical thermoset shape‐memory polyurethane is readily capable of permanent reshaping (plasticity) after a topological network rearrangement that is induced by transcarbamoylation. By employing the Jianzhi technique (also known as kirigami), unexpected shape‐shifting versatility was observed for this otherwise classical material. As the essential carbamate moiety in polyurethanes is one of the most common polymer building units, we anticipate that our finding will have significant benefits beyond shape shifting.Thermoset polymers are known for their superior thermomechanical properties, but the chemical crosslinking typically leads to intractability. However, a classical thermoset shape‐memory polyurethane was now shown to be readily capable of permanent reshaping (plasticity) after a topological network rearrangement that is induced by transcarbamoylation.
dc.publisherCRC
dc.publisherWiley Periodicals, Inc.
dc.subject.otherelasticity
dc.subject.otherplasticity
dc.subject.othershape memory
dc.subject.otherpolyurethane
dc.subject.otherpolymers
dc.titleThermoset Shape‐Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137615/1/anie201602847.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137615/2/anie201602847-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137615/3/anie201602847_am.pdf
dc.identifier.doi10.1002/anie.201602847
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceP. Taynton, K. Yu, R. K. Shoemaker, Y. H. Jin, H. J. Qi, W. Zhang, Adv. Mater. 2014, 26, 3938 – 3942;
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceM. Behl, K. Kratz, J. Zotzmann, U. Nochel, A. Lendlein, Adv. Mater. 2013, 25, 4466 – 4469;
dc.identifier.citedreferenceJ. Zhou, S. A. Turner, S. M. Brosnan, Q. X. Li, J. M. Y. Carrillo, D. Nykypanchuk, O. Gang, V. S. Ashby, A. V. Dobrynin, S. S. Sheiko, Macromolecules 2014, 47, 1768 – 1776.
dc.identifier.citedreference 
dc.identifier.citedreferenceW. M. Huang, B. Yang, Y. Q. Fu, Polyurethane Shape Memory Polymers, CRC, Boca Raton, 2011;
dc.identifier.citedreferenceS. J. Chen, J. L. Hu, H. T. Zhou, S. G. Chen, J. Mater. Sci. 2011, 46, 5294 – 5304.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. Montarnal, M. Capelot, F. Tournilhac, L. Leibler, Science 2011, 334, 965 – 968;
dc.identifier.citedreferenceM. Capelot, M. M. Unterlass, F. Tournilhac, L. Leibler, ACS Macro Lett. 2012, 1, 789 – 792;
dc.identifier.citedreferenceJ. P. Brutman, P. A. Delgado, M. A. Hillmyer, ACS Macro Lett. 2014, 3, 607 – 610;
dc.identifier.citedreferenceZ. Pei, Y. Yang, Q. Chen, E. M. Terentjev, Y. Wei, Y. Ji, Nat. Mater. 2014, 13, 36 – 41;
dc.identifier.citedreferenceQ. Zhao, W. K. Zou, Y. W. Luo, T. Xie, Sci. Adv. 2016, 2, e 1501297.
dc.identifier.citedreferenceZ. Pei, Y. Yang, Q. Chen, Y. Wei, Y. Ji, Adv. Mater. 2016, 28, 156 – 160.
dc.identifier.citedreferenceP. Zheng, T. J. McCarthy, J. Am. Chem. Soc. 2012, 134, 2024 – 2028.
dc.identifier.citedreferenceY. X. Lu, F. Tournilhac, L. Leibler, Z. Guan, J. Am. Chem. Soc. 2012, 134, 8424 – 8427.
dc.identifier.citedreferenceO. R. Cromwell, J. Chung, Z. Guan, J. Am. Chem. Soc. 2015, 137, 6492 – 6495.
dc.identifier.citedreferenceT. F. Scott, A. D. Schneider, W. D. Cook, C. N. Bowman, Science 2005, 308, 1615 – 1617.
dc.identifier.citedreferenceB. T. Michal, C. A. Jaye, E. J. Spencer, S. J. Rowan, ACS Macro Lett. 2013, 2, 694 – 699.
dc.identifier.citedreferenceD. J. Fortman, J. P. Brutman, C. J. Cramer, M. A. Hillmyer, W. R. Dichtel, J. Am. Chem. Soc. 2015, 137, 14019 – 14022.
dc.identifier.citedreference 
dc.identifier.citedreferenceR. J. Wojtecki, M. A. Meador, S. J. Rowan, Nat. Mater. 2011, 10, 14 – 27;
dc.identifier.citedreferenceY. Ying, M. W. Urban, Angew. Chem. Int. Ed. 2014, 53, 12436 – 12440; Angew. Chem. 2014, 126, 12644 – 12648;
dc.identifier.citedreferenceG. Deng, C. Tang, F. Li, H. Jiang, Y. Chen, Macromolecules 2010, 43, 1191 – 1194;
dc.identifier.citedreferenceH. Z. Ying, Y. F. Zhang, J. J. Cheng, Nat. Commun. 2014, 5, 3218.
dc.identifier.citedreferenceT. C. Shyu, P. F. Damasceno, P. M. Dodd, A. Lamoureux, L. Xu, M. Shlian, M. Shtein, S. C. Glotzer, N. A. Kotov, Nat. Mater. 2015, 14, 785 – 789;
dc.identifier.citedreferenceA. Lamoureux, K. Lee, M. Shlian, S. R. Forrest, M. Shtein, Nat. Commun. 2015, 6, 8092.
dc.identifier.citedreference 
dc.identifier.citedreferenceQ. Zhao, H. J. Qi, T. Xie, Prog. Polym. Sci. 2015, 49–50, 79 – 120;
dc.identifier.citedreferenceM. Behl, M. Y. Razzaq, A. Lendlein, Adv. Mater. 2010, 22, 3388 – 4100;
dc.identifier.citedreferenceP. T. Mather, X. F. Luo, I. A. Rousseau, Annu. Rev. Mater. Res. 2009, 39, 445 – 471;
dc.identifier.citedreferenceR. R. Kohlmeyer, P. R. Buskohl, J. R. Deneault, M. F. Durstock, R. A. Vaia, J. Chen, Adv. Mater. 2014, 26, 8114 – 8119;
dc.identifier.citedreferenceM. Behl, K. Kratz, J. Zotzmann, U. Nochel, A. Lendlein, Adv. Mater. 2013, 25, 4466 – 4469;
dc.identifier.citedreferenceY. Liu, J. K. Boyles, J. Genzer, M. D. Dickey, Soft Matter 2012, 8, 1764 – 1769.
dc.identifier.citedreferenceT. Xie, Nature 2010, 464, 267 – 270.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.