Show simple item record

Investigating the performance of simplified neutral‐ion collisional heating rate in a global IT model

dc.contributor.authorZhu, Jie
dc.contributor.authorRidley, Aaron J.
dc.date.accessioned2017-06-16T20:17:07Z
dc.date.available2017-06-16T20:17:07Z
dc.date.issued2016-01
dc.identifier.citationZhu, Jie; Ridley, Aaron J. (2016). "Investigating the performance of simplified neutral‐ion collisional heating rate in a global IT model." Journal of Geophysical Research: Space Physics 121(1): 578-588.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/137627
dc.description.abstractThe Joule heating rate has usually been used as an approximate form of the neutral‐ion collisional heating rate in the thermospheric energy equation in global thermosphere‐ionosphere models. This means that the energy coupling has ignored the energy gained by the ions from collisions with electrons. It was found that the globally averaged thermospheric temperature (Tn) was underestimated in simulations using the Joule heating rate, by about 11% when F10.7=110 solar flux unit (sfu, 1 sfu = 10−22 W m−2 Hz−1) in a quiet geomagnetic condition. The underestimation of Tn was higher at low latitudes than high latitudes, and higher at F region altitudes than at E region altitudes. It was found that adding additional neutral photoelectron heating in a global IT model compensated for the underestimation of Tn using the Joule heating approximation. Adding direct photoelectron heating to the neutrals compensated for the indirect path for the energy that flows from the electrons to the ions then to the neutrals naturally and therefore was an adequate compensation over the dayside. There was a slight dependence of the underestimation of Tn on F10.7, such that larger activity levels resulted in a need for more compensation in direct photoelectron heating to the neutrals to make up for the neglected indirect heating through ions and electrons.Key PointsUsing Joule heating rate as the neutral‐ion energy coupling led to a cooler thermosphereNeutral photoelectron heating efficiency compensates for the missing heatingA slight dependence of the underestimation of Tn on F10.7 existed
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherJoule heating
dc.subject.otherionosphere
dc.subject.otherthermosphere
dc.titleInvestigating the performance of simplified neutral‐ion collisional heating rate in a global IT model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137627/1/jgra52323_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137627/2/jgra52323.pdf
dc.identifier.doi10.1002/2015JA021637
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSmithtro, C. G., and S. C. Solomon ( 2008 ), An improved parameterization of thermal electron heating by photoelectrons, with application to an x17 flare, J. Geophys. Res., 113, A08307, doi: 10.1029/2008JA013077.
dc.identifier.citedreferenceRichmond, A. D. ( 1995 ), Ionospheric electrodynamics using magnetic apex coordinates, J. Geomagn. Geoelectr., 47, 191 – 212.
dc.identifier.citedreferenceRidley, A., Y. Deng, and G. Tòth ( 2006 ), The global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 68, 839 – 864, doi: 10.1016/j.jastp.2006.01.008.
dc.identifier.citedreferenceRoble, R. ( 1975 ), The calculated and observed diurnal variation of the ionosphere over Millstone Hill on March 23–24, 1970, Planet. Space Sci., 23, 1017 – 1033, doi: 10.1016/0032‐0633(75)90192‐0.
dc.identifier.citedreferenceRoble, R., and B. Emery ( 1983 ), On the global mean temperature of the thermosphere, Planet. Space Sci., 31 ( 6 ), 597 – 614.
dc.identifier.citedreferenceRoble, R. G., E. Ridley, A. Richmond, and R. Dickinson ( 1988 ), A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325 – 1328, doi: 10.1029/GL015i012p01325.
dc.identifier.citedreferenceRodger, A., G. Wells, R. Moffett, and G. Bailey ( 2001 ), The variability of Joule heating, and its effects on the ionosphere and thermosphere, Ann. Geophys., 19, 773 – 781.
dc.identifier.citedreferenceSchunk, R., and A. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceSchunk, R. W. ( 1975 ), Transport equations for aeronomy, Planet. Space Sci., 23, 437 – 485, doi: 10.1016/0032‐0633(75)90118‐X.
dc.identifier.citedreferenceSt‐Maurice, J.‐P., and W. Hanson ( 1982 ), Ion frictional heating at high latitudes and its possible use for an in situ determination of neutral thermospheric winds and temperatures, J. Geophys. Res., 87 ( A9 ), 7580 – 7602.
dc.identifier.citedreferenceStrangeway, R. J. ( 2012 ), The equivalence of Joule dissipation and frictional heating in the collisional ionosphere, J. Geophys. Res., 117, A02310, doi: 10.1029/2011JA017302.
dc.identifier.citedreferenceSwartz, W. E., and J. S. Nisbet ( 1972 ), Revised calculations of F region ambient electron heating by photoelectrons, J. Geophys. Res., 77, 6259 – 6261, doi: 10.1029/JA077i031p06259.
dc.identifier.citedreferenceThayer, J. ( 1998 ), Height‐resolved Joule heating rates in the high‐latitude E region and the influence of neutral winds, J. Geophys. Res., 103 ( A1 ), 471 – 487.
dc.identifier.citedreferenceThayer, J. P., and J. Semeter ( 2004 ), The convergence of magnetospheric energy flux in the polar atmosphere, J. Atmos. Sol. Terr. Phys., 66, 807 – 824, doi: 10.1016/j.jastp.2004.01.035.
dc.identifier.citedreferenceTorr, M., D. Torr, and P. Richards ( 1980 ), The solar ultraviolet heating efficiency of the midlatitude thermosphere, Geophys. Res. Lett., 7 ( 5 ), 373 – 376.
dc.identifier.citedreferenceTorr, M. R., D. Torr, P. Richards, and S. Yung ( 1990 ), Mid‐and low‐latitude model of thermospheric emissions: 1. O + ( 2 P ) 7320 Å and N2 (2 P ) 3371 Å, J. Geophys. Res., 95 ( A12 ), 21,147 – 21,168.
dc.identifier.citedreferenceVichare, G., A. J. Ridley, and E. Yigğit ( 2012 ), Quiet‐time low latitude ionospheric electrodynamics in the non‐hydrostatic global ionosphere‐thermosphere model, J. Atmos. Sol. Terr. Phys., 80, 161 – 172, doi: 10.1016/j.jastp.2012.01.009.
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.
dc.identifier.citedreferenceZhu, X., E. R. Talaat, J. B. H. Baker, and J.‐H. Yee ( 2005 ), A self‐consistent derivation of ion drag and Joule heating for atmospheric dynamics in the thermosphere, Ann. Geophys., 23, 3313 – 3322, doi: 10.5194/angeo‐23‐3313‐2005.
dc.identifier.citedreferenceLiu, H., and H. Lühr ( 2005 ), Strong disturbance of the upper thermospheric density due to magnetic storms: Champ observations, J. Geophys. Res., 110, A09S29, doi: 10.1029/2004JA010908.
dc.identifier.citedreferenceMaute, A. ( 2011 ), TIEGCM V 1.94 Model Description, Natl. Cent. for Atmos. Res., Boulder, Colo.
dc.identifier.citedreferenceNagy, A., and P. Banks ( 1970 ), Photoelectron fluxes in the ionosphere, J. Geophys. Res., 75 ( 31 ), 6260 – 6270.
dc.identifier.citedreferenceRasussen, C. E., J. J. Sojka, R. W. Schunk, V. B. Wickwar, and O. de la Beaujardiere ( 1988 ), Comparison of simultaneous Chatanika and Millstone Hill temperature measurements with ionospheric model predictions, J. Geophys. Res., 93, 1922 – 1932, doi: 10.1029/JA093iA03p01922.
dc.identifier.citedreferenceAggarwal, K., N. Nath, and C. Setty ( 1979 ), Collision frequency and transport properties of electrons in the ionosphere, Planet. Space Sci., 27 ( 6 ), 753 – 768.
dc.identifier.citedreferenceBanks, P., J. Foster, and J. Doupnik ( 1981 ), Chatanika radar observations relating to the latitudinal and local time variations of Joule heating, J. Geophys. Res., 86 ( A8 ), 6869 – 6878.
dc.identifier.citedreferenceBanks, P. M., and G. Kockarts ( 1973 ), Aeronomy, Academic Press, New York.
dc.identifier.citedreferenceBarth, C., G. Lu, and R. Roble ( 2009 ), Joule heating and nitric oxide in the thermosphere, J. Geophys. Res., 114, A05301, doi: 10.1029/2008JA013765.
dc.identifier.citedreferenceBrekke, A. ( 2012 ), Physics of the Upper Polar Atmosphere, Springer, Berlin.
dc.identifier.citedreferenceBurrell, A. G., A. Goel, A. J. Ridley, and D. S. Bernstein ( 2015 ), Correction of the photoelectron heating efficiency with the global ionosphere‐thermosphere model using retrospective cost model refinement, J. Atmos. Sol. Terr. Phys., 124, 30 – 38, doi: 10.1016/j.jastp.2015.01.004.
dc.identifier.citedreferenceCodrescu, M., T. Fuller‐Rowell, and J. Foster ( 1995 ), On the importance of E‐field variability for Joule heating in the high‐latitude thermosphere, Geophys. Res. Lett., 22 ( 17 ), 2393 – 2396.
dc.identifier.citedreferenceCole, K. ( 1971 ), Electrodynamic heating and movement of the thermosphere, Planet. Space Sci., 19 ( 1 ), 59 – 75.
dc.identifier.citedreferenceCole, K. D. ( 1962 ), Joule heating of the upper atmosphere, Aust. J. Phys., 15, 223, doi: 10.1071/PH620223.
dc.identifier.citedreferenceDeng, Y., and A. J. Ridley ( 2007 ), Possible reasons for underestimating Joule heating in global models: E field variability, spatial resolution, and vertical velocity, J. Geophys. Res., 112, A09308, doi: 10.1029/2006JA012006.
dc.identifier.citedreferenceDeng, Y., T. J. Fuller‐Rowell, R. A. Akmaev, and A. J. Ridley ( 2011 ), Impact of the altitudinal Joule heating distribution on the thermosphere, J. Geophys. Res., 116, A05313, doi: 10.1029/2010JA016019.
dc.identifier.citedreferenceEmery, B. A., C. Lathuillere, P. G. Richards, R. G. Roble, M. J. Buonsanto, D. J. Knipp, P. Wilkinson, D. P. Sipler, and R. Niciejewski ( 1999 ), Time dependent thermospheric neutral response to the 2–11 November 1993 storm period, J. Atmos. Sol. Terr. Phys., 61, 329 – 350, doi: 10.1016/S1364‐6826(98)00137‐0.
dc.identifier.citedreferenceFuller‐Rowell, T., M. Codrescu, H. Rishbeth, R. Moffett, and S. Quegan ( 1996 ), On the seasonal response of the thermosphere and ionosphere to geomagnetic storms, J. Geophys. Res., 101 ( A2 ), 2343 – 2353.
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. S. Evans ( 1987 ), Height‐integrated Pedersen and Hall conductivity patterns inferred from the TIROS‐NOAA satellite data, J. Geophys. Res., 92, 7606 – 7618, doi: 10.1029/JA092iA07p07606.
dc.identifier.citedreferenceFuller‐Rowell, T. J., and D. Rees ( 1980 ), A three‐dimensional time‐dependent global model of the thermosphere, J. Atmos. Sci., 37, 2545 – 2567, doi: 10.1175/1520-0469(1980)037<2545:ATDTDG>2.0.CO;2
dc.identifier.citedreferenceGary, J., R. Heelis, and J. Thayer ( 1995 ), Summary of field‐aligned Poynting flux observations from DE 2, Geophys. Res. Lett., 22 ( 14 ), 1861 – 1864.
dc.identifier.citedreferenceHedin, A. E., et al. ( 1977 ), A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS, 1. N 2 density and temperature, J. Geophys. Res., 82 ( 16 ), 2139 – 2147, doi: 10.1029/JA082i016p02139.
dc.identifier.citedreferenceHeelis, R., and W. Coley ( 1988 ), Global and local Joule heating effects seen by DE 2, J. Geophys. Res., 93 ( A7 ), 7551 – 7557.
dc.identifier.citedreferenceKilleen, T. L., P. B. Hays, G. R. Carignan, R. H. Heelis, W. B. Hanson, N. W. Spencer, and L. H. Brace ( 1984 ), Ion‐neutral coupling in the high‐latitude f region: Evaluation of ion heating terms from Dynamics Explorer 2, J. Geophys. Res., 89, 7495 – 7508, doi: 10.1029/JA089iA09p07495.
dc.identifier.citedreferenceRichards, P., and D. Torr ( 1983 ), A simple theoretical model for calculating and parameterizing the ionospheric photoelectron flux, J. Geophys. Res., 88 ( A3 ), 2155 – 2162.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.