Show simple item record

White matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network

dc.contributor.authorLee, Seonjoo
dc.contributor.authorViqar, Fawad
dc.contributor.authorZimmerman, Molly E.
dc.contributor.authorNarkhede, Atul
dc.contributor.authorTosto, Giuseppe
dc.contributor.authorBenzinger, Tammie L.S.
dc.contributor.authorMarcus, Daniel S.
dc.contributor.authorFagan, Anne M.
dc.contributor.authorGoate, Alison
dc.contributor.authorFox, Nick C.
dc.contributor.authorCairns, Nigel J.
dc.contributor.authorHoltzman, David M.
dc.contributor.authorBuckles, Virginia
dc.contributor.authorGhetti, Bernardino
dc.contributor.authorMcDade, Eric
dc.contributor.authorMartins, Ralph N.
dc.contributor.authorSaykin, Andrew J.
dc.contributor.authorMasters, Colin L.
dc.contributor.authorRingman, John M.
dc.contributor.authorRyan, Natalie S.
dc.contributor.authorFörster, Stefan
dc.contributor.authorLaske, Christoph
dc.contributor.authorSchofield, Peter R.
dc.contributor.authorSperling, Reisa A.
dc.contributor.authorSalloway, Stephen
dc.contributor.authorCorreia, Stephen
dc.contributor.authorJack, Clifford
dc.contributor.authorWeiner, Michael
dc.contributor.authorBateman, Randall J.
dc.contributor.authorMorris, John C.
dc.contributor.authorMayeux, Richard
dc.contributor.authorBrickman, Adam M.
dc.date.accessioned2017-06-16T20:17:09Z
dc.date.available2017-08-01T14:25:48Zen
dc.date.issued2016-06
dc.identifier.citationLee, Seonjoo; Viqar, Fawad; Zimmerman, Molly E.; Narkhede, Atul; Tosto, Giuseppe; Benzinger, Tammie L.S.; Marcus, Daniel S.; Fagan, Anne M.; Goate, Alison; Fox, Nick C.; Cairns, Nigel J.; Holtzman, David M.; Buckles, Virginia; Ghetti, Bernardino; McDade, Eric; Martins, Ralph N.; Saykin, Andrew J.; Masters, Colin L.; Ringman, John M.; Ryan, Natalie S.; Förster, Stefan ; Laske, Christoph; Schofield, Peter R.; Sperling, Reisa A.; Salloway, Stephen; Correia, Stephen; Jack, Clifford; Weiner, Michael; Bateman, Randall J.; Morris, John C.; Mayeux, Richard; Brickman, Adam M. (2016). "White matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network." Annals of Neurology 79(6): 929-939.
dc.identifier.issn0364-5134
dc.identifier.issn1531-8249
dc.identifier.urihttps://hdl.handle.net/2027.42/137628
dc.publisherWiley Periodicals, Inc.
dc.titleWhite matter hyperintensities are a core feature of Alzheimer’s disease: Evidence from the dominantly inherited Alzheimer network
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPsychiatry
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137628/1/ana24647.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137628/2/ana24647_am.pdf
dc.identifier.doi10.1002/ana.24647
dc.identifier.sourceAnnals of Neurology
dc.identifier.citedreferenceVerhaaren BF, Debette S, Bis JC, et al. Multiethnic genome‐wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet 2015; 8: 398 – 409.
dc.identifier.citedreferenceZlokovic BV. Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 2011; 12: 723 – 738.
dc.identifier.citedreferenceWhite L. Brain lesions at autopsy in older Japanese‐American men as related to cognitive impairment and dementia in the final years of life: a summary report from the Honolulu‐Asia aging study. J Alzheimers Dis 2009; 18: 713 – 725.
dc.identifier.citedreferenceSchneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community‐dwelling older persons. Neurology 2007; 69: 2197 – 2204.
dc.identifier.citedreferenceCairns NJ, Perrin RJ, Franklin EE, et al. Neuropathologic assessment of participants in two multi‐center longitudinal observational studies: The Alzheimer Disease Neuroimaging Initiative (ADNI) and the Dominantly Inherited Alzheimer Network (DIAN). Neuropathology 2015; 35: 390 – 400.
dc.identifier.citedreferenceBateman RJ, Xiong C, Benzinger TL, et al. Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 2012; 367: 795 – 804.
dc.identifier.citedreferenceRyman DC, Acosta‐Baena N, Aisen PS, et al. Symptom onset in autosomal dominant Alzheimer disease: a systematic review and meta‐analysis. Neurology 2014; 83: 253 – 260.
dc.identifier.citedreferenceMorris JC, Aisen PS, Bateman RJ, et al. Developing an international network for Alzheimer research: The Dominantly Inherited Alzheimer Network. Clin Investig (Lond) 2012; 2: 975 – 984.
dc.identifier.citedreferenceMorris JC, Ernesto C, Schafer K, et al. Clinical dementia rating training and reliability in multicenter studies: the Alzheimer’s Disease Cooperative Study experience. Neurology 1997; 48: 1508 – 1510.
dc.identifier.citedreferenceJack CR, Jr., Bernstein MA, Borowski BJ, et al. Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement 2010; 6: 212 – 220.
dc.identifier.citedreferenceBrickman AM, Zahodne LB, Guzman VA, et al. Reconsidering harbingers of dementia: progression of parietal lobe white matter hyperintensities predicts Alzheimer’s disease incidence. Neurobiol Aging 2015; 36: 27 – 32.
dc.identifier.citedreferenceKnudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001; 56: 537 – 539.
dc.identifier.citedreferenceMcZgee VE, Carleton WT. Piecewise regression. J Am Stat Assoc 1970; 65: 1109 – 1124.
dc.identifier.citedreferenceKim HJ, Yu B, Feuer EJ. Selecting the number of change‐points in segmented line regression. Stat Sin 2009; 19: 597 – 609.
dc.identifier.citedreferencePiepho HP, Ogutu JO. Inference for the break point in segmented regression with application to longitudinal data. Biometr J 2003; 45: 591 – 601.
dc.identifier.citedreferenceCleveland WS. Robust locally‐weighted regression and smoothing scatterplots. J Am Stat Assoc 1979; 74: 829 – 836.
dc.identifier.citedreferenceBurbridge JB, Magee L, Robb AL. Alternative transformations to handle extreme values of the dependent variable. J Am Stat Assoc 1988; 83: 123 – 127.
dc.identifier.citedreferencePrins ND, Scheltens P. White matter hyperintensities, cognitive impairment and dementia: an update. Nat Rev Neurol 2015; 11: 157 – 165.
dc.identifier.citedreferenceBrickman AM, Guzman VA, Gonzalez‐Castellon M, et al. Cerebral autoregulation, beta amyloid, and white matter hyperintensities are interrelated. Neurosci Lett 2015; 592: 54 – 58.
dc.identifier.citedreferenceGrimmer T, Faust M, Auer F, et al. White matter hyperintensities predict amyloid increase in Alzheimer’s disease. Neurobiol Aging 2012; 33: 2766 – 2773.
dc.identifier.citedreferenceZhou Y, Yu F, Duong TQ. White matter lesion load is associated with resting state functional MRI activity and amyloid PET but not FDG in mild cognitive impairment and early Alzheimer’s disease patients. J Magn Reson Imaging 2015; 41: 102 – 109.
dc.identifier.citedreferenceVemuri P, Lesnick TG, Przybelski SA, et al. Vascular and amyloid pathologies are independent predictors of cognitive decline in normal elderly. Brain 2015; 138 ( pt 3 ): 761 – 771.
dc.identifier.citedreferenceTosto G, Zimmerman ME, Hamilton JL, Carmichael OT, Brickman AM; Alzheimer’s Disease Neuroimaging Initiative. The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimers Dement 2015; 11: 1510 – 1519.
dc.identifier.citedreferenceErten‐Lyons D, Woltjer R, Kaye J, et al. Neuropathologic basis of white matter hyperintensity accumulation with advanced age. Neurology 2013; 81: 977 – 983.
dc.identifier.citedreferenceShim YS, Yang DW, Roe CM, et al. Pathological correlates of white matter hyperintensities on magnetic resonance imaging. Dement Geriatr Cogn Disord 2015; 39: 92 – 104.
dc.identifier.citedreferenceRyan NS, Biessels GJ, Kim L, et al. Genetic determinants of white matter hyperintensities and amyloid angiopathy in familial Alzheimer’s disease. Neurobiol Aging 2015; 36: 3140 – 3151.
dc.identifier.citedreferenceThanprasertsuk S, Martinez‐Ramirez S, Pontes‐Neto OM, et al. Posterior white matter disease distribution as a predictor of amyloid angiopathy. Neurology 2014; 83: 794 – 800.
dc.identifier.citedreferenceGurol ME, Viswanathan A, Gidicsin C, et al. Cerebral amyloid angiopathy burden associated with leukoaraiosis: a positron emission tomography/magnetic resonance imaging study. Ann Neurol 2013; 73: 529 – 536.
dc.identifier.citedreferenceTakao M, Ghetti B, Murrell JR, et al. Ectopic white matter neurons, a developmental abnormality that may be caused by the PSEN1 S169L mutation in a case of familial AD with myoclonus and seizures. J Neuropathol Exp Neurol 2001; 60: 1137 – 1152.
dc.identifier.citedreferenceSun SW, Song SK, Harms MP, et al. Detection of age‐dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 2005; 191: 77 – 85.
dc.identifier.citedreferenceCollins‐Praino L, Francis Y, Wiegman AF, et al. Soluble amyloid beta levels are elevated in the white matter of Alzheimer’s patients, independent of cortical plaque burden. Acta Neuropathol Commun 2014; 2: 83.
dc.identifier.citedreferenceBrendza RP, O’Brien C, Simmons K, et al. PDAPP; YFP double transgenic mice: a tool to study amyloid‐beta associated changes in axonal, dendritic, and synaptic structures. J Comp Neurol 2003; 456: 375 – 383.
dc.identifier.citedreferenceBehrendt G, Baer K, Buffo A, et al. Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 2013; 61: 273 – 286.
dc.identifier.citedreferenceLeuba G, Kraftsik R. Visual cortex in Alzheimer’s disease: occurrence of neuronal death and glial proliferation, and correlation with pathological hallmarks. Neurobiol Aging 1994; 15: 29 – 43.
dc.identifier.citedreferenceReddy PH. Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer’s disease. Brain Res 2011; 1415: 136 – 148.
dc.identifier.citedreferencePantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689 – 701.
dc.identifier.citedreferenceDeCarli C, Massaro J, Harvey D, et al. Measures of brain morphology and infarction in the framingham heart study: establishing what is normal. Neurobiol Aging 2005; 26: 491 – 510.
dc.identifier.citedreferenceGorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke 2011; 42: 2672 – 2713.
dc.identifier.citedreferenceBennett DA, Schneider JA, Arvanitakis Z, et al. Neuropathology of older persons without cognitive impairment from two community‐based studies. Neurology 2006; 66: 1837 – 1844.
dc.identifier.citedreferenceAizenstein HJ, Nebes RD, Saxton JA, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol 2008; 65: 1509 – 1517.
dc.identifier.citedreferenceDeKosky ST, Blennow K, Ikonomovic MD, Gandy S. Acute and chronic traumatic encephalopathies: pathogenesis and biomarkers. Nat Rev Neurol 2013; 9: 192 – 200.
dc.identifier.citedreferenceCrary JF, Trojanowski JQ, Schneider JA, et al. Primary age‐related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 2014; 128: 755 – 766.
dc.identifier.citedreferenceMcKee AC, Stein TD, Kiernan PT, Alvarez VE. The neuropathology of chronic traumatic encephalopathy. Brain Pathol 2015; 25: 350 – 364.
dc.identifier.citedreferenceJack CR, Jr., Petersen RC, O’Brien PC, Tangalos EG. MR‐based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992; 42: 183 – 188.
dc.identifier.citedreferenceRaz N, Lindenberger U, Rodrigue KM, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex 2005; 15: 1676 – 1689.
dc.identifier.citedreferenceDebette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta‐analysis. BMJ. 2010; 341: c3666.
dc.identifier.citedreferenceWardlaw JM, Valdés Hernández MC, Muñoz‐Maniega S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 2015; 4: 001140.
dc.identifier.citedreferenceBrickman AM. Contemplating Alzheimer’s disease and the contribution of white matter hyperintensities. Curr Neurol Neurosci Rep 2013; 13: 415.
dc.identifier.citedreferenceJack CR, Jr., Knopman DS, Jagust WJ, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol 2013; 12: 207 – 216.
dc.identifier.citedreferenceLindemer ER, Salat DH, Smith EE, et al.; Alzheimer’s Disease Neuroimaging Initiative. White matter signal abnormality quality differentiates mild cognitive impairment that converts to Alzheimer’s disease from nonconverters. Neurobiol Aging 2015; 6: 2447 – 2457.
dc.identifier.citedreferenceBrickman AM, Provenzano FA, Muraskin J, et al. Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community. Arch Neurol 2012; 69: 1621 – 1627.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.