Show simple item record

Photoelectrons in the quiet polar wind

dc.contributor.authorGlocer, A.
dc.contributor.authorKhazanov, G.
dc.contributor.authorLiemohn, M.
dc.date.accessioned2017-07-13T17:35:30Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-06
dc.identifier.citationGlocer, A.; Khazanov, G.; Liemohn, M. (2017). "Photoelectrons in the quiet polar wind." Journal of Geophysical Research: Space Physics 122(6): 6708-6726.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/137691
dc.description.abstractThis study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM‐STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day‐night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.Key PointsStudy presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solutionSingle stationary field line solutions under sunlit and dark conditions are presented as is the global solution from ∼1000 moving linesField line motion creates global structure by transporting field lines through different conditions of illumination and Joule heating
dc.publisherAGU
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotoelectrons
dc.subject.otherionospheric outflow
dc.subject.otherpolar wind
dc.titlePhotoelectrons in the quiet polar wind
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137691/1/jgra53574.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137691/2/jgra53574_am.pdf
dc.identifier.doi10.1002/2017JA024177
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceShay, M. A., J. F. Drake, M. Swisdak, and B. N. Rogers ( 2004 ), The scaling of embedded collisionless reconnection, Phys. Plasmas, 11, 2199 – 2213, doi: 10.1063/1.1705650.
dc.identifier.citedreferenceLiemohn, M. W., and G. V. Khazanov ( 1998 ), Collisionless plasma modeling in an arbitrary potential energy distribution, Phys. Plasmas, 5 ( 3 ), 580 – 589, doi: 10.1063/1.872750.
dc.identifier.citedreferenceLiemohn, M. W., G. V. Khazanov, T. E. Moore, and S. M. Guiter ( 1997 ), Self‐consistent superthermal electron effects on plasmaspheric refilling, J. Geophys. Res., 102, 7523 – 7536, doi: 10.1029/96JA03962.
dc.identifier.citedreferenceNishida, A. ( 1966 ), Formation of plasmapause, or magnetospheric plasma knee, by the combined action of magnetospheric convection and plasma escape from the tail, J. Geophys. Res., 71 ( 23 ), 5669 – 5679, doi: 10.1029/JZ071i023p05669.
dc.identifier.citedreferencePeterson, W. K., T. N. Woods, P. C. Chamberlin, and P. G. Richards ( 2008 ), Photoelectron flux variations observed from the FAST satellite, Adv. Space Res., 42, 947 – 956, doi: 10.1016/j.asr.2007.08.038.
dc.identifier.citedreferenceRichards, P. G., T. N. Woods, and W. K. Peterson ( 2006 ), Heuvac: A new high resolution solar EUV proxy model, Adv. Space Res., 37 ( 2 ), 315 – 322, doi: 10.1016/j.asr.2005.06.031. thermospheric‐Ionospheric‐Geospheric(TIGER)Symposium.
dc.identifier.citedreferenceShelley, E. G., R. G. Johnson, and R. D. Sharp ( 1972 ), Satellite observations of energetic heavy ions during a geomagnetic storm, J. Geophys. Res., 77, 6104 – 6110, doi: 10.1029/JA077i031p06104.
dc.identifier.citedreferenceSolomon, S. C., S. M. Bailey, and T. N. Woods ( 2001 ), Effect of solar soft X‐rays on the lower ionosphere, Geophys. Res. Lett., 28 ( 11 ), 2149 – 2152, doi: 10.1029/2001GL012866.
dc.identifier.citedreferenceStrobel, D. F., T. R. Young, R. R. Meier, T. P. Coffey, and A. W. Ali ( 1974 ), The nighttime ionosphere: E region and lower F region, J. Geophys. Res., 79, 3171 – 3178, doi: 10.1029/JA079i022p03171.
dc.identifier.citedreferenceSu, Y.‐J., J. L. Horwitz, G. R. Wilson, P. G. Richards, D. G. Brown, and C. W. Ho ( 1998 ), Self‐consistent simulation of the photoelectron‐driven polar wind from 120 km to 9  R E altitude, J. Geophys. Res., 103, 2279 – 2296, doi: 10.1029/97JA03085.
dc.identifier.citedreferenceTam, S. W. Y., F. Yasseen, T. Chang, and S. B. Ganguli ( 1995 ), Self‐consistent kinetic photoelectron effects on the polar wind, Geophys. Res. Lett., 22, 2107 – 2110, doi: 10.1029/95GL01846.
dc.identifier.citedreferenceTam, S. W. Y., F. Yasseen, and T. Chang ( 1998 ), Further development in theory/data closure of the photoelectron‐driven polar wind and day‐night transition of the outflow, Ann. Geophys., 16, 948 – 968, doi: 10.1007/s00585-998-0948-2.
dc.identifier.citedreferenceTitheridge, J. E. ( 2000 ), Modelling the peak of the ionospheric E ‐layer, J. Atmos. Sol. Terr. Phys., 62, 93 – 114, doi: 10.1016/S1364-6826(99)00102-9.
dc.identifier.citedreferenceVarney, R. H., S. C. Solomon, and M. J. Nicolls ( 2014 ), Heating of the sunlit polar cap ionosphere by reflected photoelectrons, J. Geophys. Res. Space Physics, 119, 8660 – 8684, doi: 10.1002/2013JA019378.
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ), Improved ionospheric electrodynamic models and application to calculating Joule heating rates, J. Geophys. Res., 110, A05306, doi: 10.1029/2004JA010884.
dc.identifier.citedreferenceWelling, D. T., et al. ( 2016 ), The Earth: Plasma sources, losses, and transport processes, in Plasma Sources of Solar System Magnetospheres, edited by A. F.   Nagy et al., pp. 145 – 208, Springer, New York, doi: 10.1007/978-1-4939-3544-4_5.
dc.identifier.citedreferenceWilson, G. R., G. Khazanov, and J. L. Horwitz ( 1997 ), Achieving zero current for polar wind outflow on open flux tubes subjected to large photoelectron fluxes, Geophys. Res. Lett., 24, 1183 – 1186, doi: 10.1029/97GL00923.
dc.identifier.citedreferenceWilson, J. K., J. Baumgardner, and M. Mendillo ( 1998 ), Three tails of comet Hale‐Bopp, Geophys. Res. Lett., 25, 225 – 228.
dc.identifier.citedreferenceYau, A. W., B. A. Whalen, T. Abe, T. Mukai, K. I. Oyama, and T. Chang ( 1995 ), Akebono observations of electron temperature anisotropy in the polar wind, J. Geophys. Res., 100, 17,451 – 17,464, doi: 10.1029/95JA00855.
dc.identifier.citedreferenceYau, A. W., T. Abe, and W. K. Peterson ( 2007 ), The polar wind: Recent observations, J. Atmos. Sol. Terr. Phys., 69, 1936 – 1983, doi: 10.1016/j.jastp.2007.08.010.
dc.identifier.citedreferenceAbe, T., B. A. Whalen, A. W. Yau, S. Watanabe, E. Sagawa, and K. I. Oyama ( 1993 ), Altitude profile of the polar wind velocity and its relationship to ionospheric conditions, Geophys. Res. Lett., 20, 2825 – 2828, doi: 10.1029/93GL02837.
dc.identifier.citedreferenceAbe, T., A. W. Yau, S. Watanabe, M. Yamada, and E. Sagawa ( 2004 ), Long‐term variation of the polar wind velocity and its implication for the ion acceleration process: Akebono/suprathermal ion mass spectrometer observations, J. Geophys. Res., 109, A09305, doi: 10.1029/2003JA010223.
dc.identifier.citedreferenceAxford, W. I. ( 1968 ), The polar wind and the terrestrial helium budget, J. Geophys. Res., 73, 6855 – 6859.
dc.identifier.citedreferenceBanks, P. M., and T. E. Holzer ( 1968 ), The polar wind, J. Geophys. Res., 73, 6846 – 6854, doi: 10.1029/JA073i021p06846.
dc.identifier.citedreferenceBrinton, H. C., J. M. Grebowsky, and H. G. Mayr ( 1971 ), Altitude variation of ion composition in the midlatitude trough region: Evidence for upward plasma flow, J. Geophys. Res., 76, 3738 – 3745, doi: 10.1029/JA076i016p03738.
dc.identifier.citedreferenceCannata, R. W., T. L. Killeen, T. I. Gombosi, A. G. Burns, and R. G. Roble ( 1988 ), Modelling of time‐dependent ion outflows at high geomagnetic latitudes, Adv. Space Res., 8, 89 – 92, doi: 10.1016/0273-1177(88)90267-0.
dc.identifier.citedreferenceChandler, M. O., T. E. Moore, and J. H. Waite Jr. ( 1991 ), Observations of polar ion outflows, J. Geophys. Res., 96, 1421 – 1428, doi: 10.1029/90JA02180.
dc.identifier.citedreferenceChappell, C. R., T. E. Moore, and J. H. Waite ( 1987 ), The ionosphere as a fully adequate source of plasma for the Earth’s magnetosphere, J. Geophys. Res., 92, 5896 – 5910.
dc.identifier.citedreferenceChiu, Y. T., and M. Schulz ( 1978 ), Self‐consistent particle and parallel electrostatic field distributions in the magnetospheric‐ionospheric auroral region, J. Geophys. Res., 83 ( A2 ), 629 – 642, doi: 10.1029/JA083iA02p00629.
dc.identifier.citedreferenceDessler, A. J., and F. C. Michel ( 1966 ), Plasma in the geomagnetic tail, J. Geophys. Res., 71 ( 5 ), 1421 – 1426, doi: 10.1029/JZ071i005p01421.
dc.identifier.citedreferenceDrob, D. P., et al. ( 2008 ), An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res., 113, A12304, doi: 10.1029/2008JA013668.
dc.identifier.citedreferenceGlocer, A., T. I. Gombosi, G. Toth, K. C. Hansen, A. J. Ridley, and A. Nagy ( 2007 ), Polar wind outflow model: Saturn results, J. Geophys. Res., 112, A01304, doi: 10.1029/2006JA011755.
dc.identifier.citedreferenceGlocer, A., G. Toth, T. Gombosi, and D. Welling ( 2009a ), Modeling ionospheric outflows and their impact on the magnetosphere, initial results, J. Geophys. Res., 114, A05216, doi: 10.1029/2009JA014053.
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. Ma, T. Gombosi, J.‐C. Zhang, and L. M. Kistler ( 2009b ), Multifluid block‐adaptive‐tree solar wind roe‐type upwind scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114, A12203, doi: 10.1029/2009JA014418.
dc.identifier.citedreferenceGlocer, A., N. Kitamura, G. Tóth, and T. Gombosi ( 2012 ), Modeling solar zenith angle effects on the polar wind, J. Geophys. Res., 117, A04318, doi: 10.1029/2011JA017136.
dc.identifier.citedreferenceGombosi, T. I., and A. Nagy ( 1989 ), Time‐dependent modeling of field aligned current‐generated ion transients in the polar wind, J. Geophys. Res., 94, 359 – 369.
dc.identifier.citedreferenceGombosi, T. I., T. E. Cravens, and A. F. Nagy ( 1985 ), A time‐dependent theoretical model of the polar wind: Preliminary results, Geophys. Res. Lett., 12, 167 – 170.
dc.identifier.citedreferenceHedin, A. ( 1983 ), A revised thermospheric model based on mass spectometer and incoherent scatter data: MSIS‐83, J. Geophys. Res., 88, 10,170 – 10,188.
dc.identifier.citedreferenceHedin, A. ( 1987 ), MSIS‐86 thermospheric model, J. Geophys. Res., 92, 4649 – 4662.
dc.identifier.citedreferenceHedin, A. ( 1991 ), Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159 – 1172.
dc.identifier.citedreferenceHinteregger, H., K. Fukui, and B. Gibson ( 1981 ), Observational, reference and model data on solar EUV from measurements on AE‐E, Geophys. Res. Lett., 8, 1147 – 1150.
dc.identifier.citedreferenceHoegy, W. R. ( 1984 ), Thermal electron heating rate: A derivation, J. Geophys. Res., 89 ( A2 ), 977 – 985, doi: 10.1029/JA089iA02p00977.
dc.identifier.citedreferenceHoffman, J. H. ( 1970 ), Studies of the composition of the ionosphere with a magnetic deflection mass spectrometer, Int. J. Mass Spectrom. Ion Phys., 4, 315 – 322.
dc.identifier.citedreferenceHoffman, J. H., W. H. Dodson, C. R. Lippincott, and H. D. Hammack ( 1974 ), Initial ion composition results from the Isis 2 satellite, J. Geophys. Res., 79, 4246 – 4251, doi: 10.1029/JA079i028p04246.
dc.identifier.citedreferenceKhazanov, G., and M. W. Liemohn ( 1995 ), Nonsteady state ionosphere‐plasmasphere coupling of superthermal electrons, J. Geophys. Res., 100, 9669 – 9681.
dc.identifier.citedreferenceKhazanov, G. V., T. Neubert, and G. D. Gefan ( 1994 ), Unified theory of ionosphere‐plasmasphere transport of suprathermal electrons, IEEE Trans. Plasma Sci., 22, 187 – 198, doi: 10.1109/27.279022.
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, and T. E. Moore ( 1997 ), Photoelectron effects on the self‐consistent potential in the collisionless polar wind, J. Geophys. Res., 102, 7509 – 7522, doi: 10.1029/96JA03343.
dc.identifier.citedreferenceKhazanov, G. V., M. W. Liemohn, E. N. Krivorutsky, and T. E. Moore ( 1998 ), Generalized kinetic description of a plasma in an arbitrary field‐aligned potential energy structure, J. Geophys. Res., 103, 6871 – 6890, doi: 10.1029/97JA03436.
dc.identifier.citedreferenceKhazanov, G. V., A. Glocer, M. W. Liemohn, and E. W. Himwich ( 2013 ), Superthermal electron energy interchange in the ionosphere‐plasmasphere system, J. Geophys. Res. Space Physics, 118, 925 – 934, doi: 10.1002/jgra.50127.
dc.identifier.citedreferenceKitamura, N., Y. Ogawa, Y. Nishimura, N. Terada, T. Ono, A. Shinbori, A. Kumamoto, V. Truhlik, and J. Smilauer ( 2011 ), Solar zenith angle dependence of plasma density and temperature in the polar cap ionosphere and low‐altitude magnetosphere during geomagnetically quiet periods at solar maximum, J. Geophys. Res., 116, AO8227, doi: 10.1029/2011JA016631.
dc.identifier.citedreferenceKitamura, N., K. Seki, Y. Nishimura, N. Terada, T. Ono, T. Hori, and R. J. Strangeway ( 2012 ), Photoelectron flows in the polar wind during geomagnetically quiet periods, J. Geophys. Res., 117, A07214, doi: 10.1029/2011JA017459.
dc.identifier.citedreferenceKitamura, N., K. Seki, Y. Nishimura, and J. P. McFadden ( 2015 ), Limited impact of escaping photoelectrons on the terrestrial polar wind flux in the polar cap, Geophys. Res. Lett., 42, 3106 – 3113, doi: 10.1002/2015GL063452.
dc.identifier.citedreferenceKnight, S. ( 1972 ), Parallel electric fields, Planet. Space Sci., 21, 741 – 750.
dc.identifier.citedreferenceLee, J. S., J. P. Doering, T. A. Potemra, and L. H. Brace ( 1980 ), Measurements of the ambient photoelectron spectrum from atmosphere explorer: II. AE‐E measurements from 300 to 1000 km during solar minimum conditions, Planet. Space Sci., 28, 973 – 996, doi: 10.1016/0032-0633(80)90059-8.
dc.identifier.citedreferenceLemaire, J. ( 1972 ), Effect of escaping photoelectrons in a polar exospheric model, Space Res., 12, 1413 – 1416.
dc.identifier.citedreferenceLennartsson, W., R. D. Sharp, E. G. Shelley, R. G. Johnson, and H. Balsiger ( 1981 ), Ion composition and energy distribution during 10 magnetic storms, J. Geophys. Res., 86, 4628 – 4638, doi: 10.1029/JA086iA06p04628.
dc.identifier.citedreferenceLiemohn, M. W., and G. V. Khazanov ( 1995 ), Nonsteady state coupling processes in superthermal electron transport, in Cross‐Scale Coupling in Space Plasmas, Geophys. Monogr. Ser., vol. 93, edited by J. L.   Horwitz, N.   Singh, and J. L.   Burch, pp. 181 – 191, AGU, Washington, D. C.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.