Show simple item record

Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity

dc.contributor.authorHedelius, Jacob K.
dc.contributor.authorFeng, Sha
dc.contributor.authorRoehl, Coleen M.
dc.contributor.authorWunch, Debra
dc.contributor.authorHillyard, Patrick W.
dc.contributor.authorPodolske, James R.
dc.contributor.authorIraci, Laura T.
dc.contributor.authorPatarasuk, Risa
dc.contributor.authorRao, Preeti
dc.contributor.authorO’Keeffe, Darragh
dc.contributor.authorGurney, Kevin R.
dc.contributor.authorLauvaux, Thomas
dc.contributor.authorWennberg, Paul O.
dc.date.accessioned2017-08-01T19:08:22Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-07-16
dc.identifier.citationHedelius, Jacob K.; Feng, Sha; Roehl, Coleen M.; Wunch, Debra; Hillyard, Patrick W.; Podolske, James R.; Iraci, Laura T.; Patarasuk, Risa; Rao, Preeti; O’Keeffe, Darragh; Gurney, Kevin R.; Lauvaux, Thomas; Wennberg, Paul O. (2017). "Emissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity." Journal of Geophysical Research: Atmospheres 122(13): 7200-7215.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/137737
dc.description.abstractWithin the California South Coast Air Basin (SoCAB), XCO2 varies significantly due to atmospheric dynamics and the nonuniform distribution of sources. XCO2 measurements within the basin have seasonal variation compared to the “background” due primarily to dynamics, or the origins of air masses coming into the basin. We observe basin‐background differences that are in close agreement for three observing systems: Total Carbon Column Observing Network (TCCON) 2.3 ± 1.2 ppm, Orbiting Carbon Observatory‐2 (OCO‐2) 2.4 ± 1.5 ppm, and Greenhouse gases Observing Satellite 2.4 ± 1.6 ppm (errors are 1σ). We further observe persistent significant differences (∼0.9 ppm) in XCO2 between two TCCON sites located only 9 km apart within the SoCAB. We estimate that 20% (±1σ confidence interval (CI): 0%, 58%) of the variance is explained by a difference in elevation using a full physics and emissions model and 36% (±1σ CI: 10%, 101%) using a simple, fixed mixed layer model. This effect arises in the presence of a sharp gradient in any species (here we focus on CO2) between the mixed layer (ML) and free troposphere. Column differences between nearby locations arise when the change in elevation is greater than the change in ML height. This affects the fraction of atmosphere that is in the ML above each site. We show that such topographic effects produce significant variation in XCO2 across the SoCAB as well.Plain Language SummaryCities persistently have elevated carbon dioxide (CO2) levels as compared to surrounding regions. Within a city CO2 levels can also vary significantly at different locations for reasons such as more CO2 being emitted in some parts than others. Elevated column CO2 levels in the South Coast Air Basin (SoCAB) are in agreement for three observation systems (two satellite and one ground‐based) systems and vary with regional wind patterns throughout the year. In Pasadena, California, within the SoCAB, a significant fraction (about 25%) of variation in the column‐averaged CO2 can be explained by differences in surface altitude. This is important to understand so that all variations in column CO2 within an urban region are not mistakenly interpreted as being from CO2 surface fluxes.Key PointsIn the SoCAB, 20–36% of spatial variance in XCO2 is explained by topography on scales ≲10 kmIn Pasadena, XCO2 is enhanced by 2.3 ± 1.2 (1σ) ppm above background levels, at 1300 (UTC 8) with seasonal variationThe SoCAB XCO2 enhancement is in agreement for 3 different observation sets (TCCON, GOSAT, and OCO‐2)
dc.publisherWiley Periodicals, Inc.
dc.publisherWorld Bank
dc.subject.otherLos Angeles
dc.subject.otherurban dome
dc.subject.otheranthropogenic emissions
dc.subject.othercarbon dioxide
dc.subject.othermegacities
dc.subject.otherSouth Coast Air Basin
dc.titleEmissions and topographic effects on column CO2 (XCO2) variations, with a focus on the Southern California Megacity
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/1/jgrd53887.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/2/jgrd53887_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137737/3/jgrd53887-sup-0001-supinfo.pdf
dc.identifier.doi10.1002/2017JD026455
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceSeto, K. C., et al. ( 2014 ), Human settlements, infrastructure, and spatial planning, in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by O.   Edenhofer et al., pp. 923 – 1000, Cambridge Univ. Press, Cambridge, U. K., and New York, doi: 10.1017/CBO9781107415416.018.
dc.identifier.citedreferenceKort, E. A., C. Frankenberg, C. E. Miller, and T. Oda ( 2012 ), Space‐based observations of megacity carbon dioxide, Geophys. Res. Lett., 39, L17806, doi: 10.1029/2012GL052738.
dc.identifier.citedreferenceKort, E. A., W. M. Angevine, R. Duren, and C. E. Miller ( 2013 ), Surface observations for monitoring urban fossil fuel CO 2 emissions: Minimum site location requirements for the Los Angeles megacity, J. Geophys. Res. Atmos., 118, 1577 – 1584, doi: 10.1002/jgrd.50135.
dc.identifier.citedreferenceKuze, A., H. Suto, M. Nakajima, and T. Hamazaki ( 2009 ), Thermal and near infrared sensor for carbon observation Fourier‐transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring, Appl. Opt., 48, 6716 – 6733, doi: 10.1364/AO.48.006716.
dc.identifier.citedreferenceKuze, A., et al. ( 2016 ), Update on GOSAT TANSO‐FTS performance, operations, and data products after more than six years in space, Atmos. Meas. Tech., 9, 2445 – 2461, doi: 10.5194/amt-9-2445-2016.
dc.identifier.citedreferenceMandrake, L., and G. Doran ( 2015a ), Warn levels: Ordering data for custom filtration in 11th International Workshop on Greenhouse Gas Measurements from Space, paper presented at 11th International Workshop on Greenhouse Gas Measurements from Space, Pasadena, Calif. [Available at https://drive.google.com/file/d/0BxA3HC2mAmDha1FfN2pfQ2JtcXc/view.]
dc.identifier.citedreferenceMandrake, L., and G. Doran ( 2015b ), DOGO warn levels: You’ve got them, let’s use them, paper presented at OCO–2 second Post‐Launch OCO‐2 Science Team Meeting, Pasadena, Calif. [Available at http://ml.jpl.nasa.gov/papers/mandrake/mandrake_2015_WL.pdf.]
dc.identifier.citedreferenceMcKain, K., S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, J. R. Ehleringer, and B. B. Stephens ( 2012 ), Assessment of ground‐based atmospheric observations for verification of greenhouse gas emissions from an urban region, Proc. Natl. Acad. Sci. U. S. A., 109, 8423 – 8428, doi: 10.1073/pnas.1116645109.
dc.identifier.citedreferenceMyhre, G., et al. ( 2013 ), Anthropogenic and natural radiative forcing, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F.   Stocker et al., pp. 659 – 740, Cambridge Univ. Press, Cambridge, U. K., and New York, doi: 10.1017/CBO9781107415324.018.
dc.identifier.citedreferenceNewman, S., X. Xu, H. P. Affek, E. Stolper, and S. Epstein ( 2008 ), Changes in mixing ratio and isotopic composition of CO 2 in urban air from the Los Angeles basin, California, between 1972 and 2003, J. Geophys. Res., 113, D23304, doi: 10.1029/2008JD009999.
dc.identifier.citedreferenceNewman, S., et al. ( 2013 ), Diurnal tracking of anthropogenic CO 2 emissions in the Los Angeles basin megacity during spring 2010, Atmos. Chem. Phys., 13, 4359 – 4372, doi: 10.5194/acp-13-4359-2013.
dc.identifier.citedreferenceNewman, S., et al. ( 2016 ), Toward consistency between trends in bottom‐up CO 2 emissions and top‐down atmospheric measurements in the Los Angeles megacity, Atmos. Chem. Phys., 16, 3843 – 3863, doi: 10.5194/acp-16-3843-2016.
dc.identifier.citedreferenceNielsen‐Gammon, J. W., C. L. Powell, M. J. Mahoney, W. M. Angevine, C. Senff, A. White, C. Berkowitz, C. Doran, and K. Knupp ( 2008 ), Multisensor estimation of mixing heights over a coastal city, J. Appl. Meteorol. Climatol., 47, 27 – 43, doi: 10.1175/2007JAMC1503.1.
dc.identifier.citedreferenceO’Dell, C. W., et al. ( 2012 ), The ACOS CO 2 retrieval algorithm—Part 1: Description and validation against synthetic observations, Atmos. Meas. Tech., 5, 99 – 121, doi: 10.5194/amt-5-99-2012.
dc.identifier.citedreferencePavley, F., and F. Nunez ( 2006 ), California Assembly Bill No. 32‐Global Warming Solutions Act of 2006. [Available at http://www.arb.ca.gov/cc/docs/ab32text.pdf.]
dc.identifier.citedreferencePerry, S. G., and W. H. Snyder ( 2017 ), Laboratory simulations of the atmospheric mixed‐layer in flow over complex topography, Phys. Fluids, 29, 020702, doi: 10.1063/1.4974505.
dc.identifier.citedreferenceSchneider, A., M. A. Friedl, and D. Potere ( 2009 ), A new map of global urban extent from MODIS satellite data, Environ. Res. Lett., 4, 044003, doi: 10.1088/1748-9326/4/4/044003.
dc.identifier.citedreferenceShultz, P., and T. T. Warner ( 1981 ), Characteristics of summertime circulations and pollutant ventilation in the Los Angeles Basin.pdf, J. Appl. Meteorol., 21, 672 – 682, doi: 10.1175/1520‐0450(1982)021<0672:COSCAP>2.0.CO;2.
dc.identifier.citedreferenceUnited Nations ( 2014 ), World Urbanization Prospects, The 2014 Revision: Highlights, U. N. Dep. of Econ. and Soc. Affairs, New York.
dc.identifier.citedreferenceVerhulst, K. R., et al. ( 2016 ), Carbon dioxide and methane measurements from the Los Angeles Megacity Carbon Project: 1. Calibration, urban enhancements, and uncertainty estimates, Atmos. Chem. Phys. Discuss, doi: 10.5194/acp-2016-850.
dc.identifier.citedreferenceVillaraigosa, A. R. ( 2007 ), Green LA: An action plan to lead the nation in fighting global warming. [Available at http://www.ci.la.ca.us/mayor/villaraigosaplan/EnergyandEnvironment/LACITY_004467.htm.]
dc.identifier.citedreferenceWare, J., E. A. Kort, P. DeCola, and R. Duren ( 2016 ), Aerosol lidar observations of atmospheric mixing in Los Angeles: Climatology and implications for greenhouse gas observations, J. Geophys. Res. Atmos., 121, 9862 – 9878, doi: 10.1002/2016JD024953.
dc.identifier.citedreferenceWehr, R., J. W. Munger, J. B. McManus, D. D. Nelson, M. S. Zahniser, E. A. Davidson, S. C. Wofsy, and S. R. Saleska ( 2016 ), Seasonality of temperate forest photosynthesis and daytime respiration, Nature, 534, 680 – 683, doi: 10.1038/nature17966.
dc.identifier.citedreferenceWennberg, P. O., C. Roehl, J.‐F. Blavier, D. Wunch, J. Landeros, and N. Allen ( 2014a ), TCCON data from Jet Propulsion Laboratory, Release GGG2014R0. TCCON data archive, Pasadena, Calif.
dc.identifier.citedreferenceWennberg, P. O., D. Wunch, C. Roehl, J.‐F. Blavier, G. C. Toon, and N. Allen ( 2014b ), TCCON data from California Institute of Technology, Release GGG2014R0. TCCON data archive, Pasadena, Calif.
dc.identifier.citedreferenceWorden, J., G. Doran, S. Kulawik, A. Eldering, D. Crisp, C. Frankenberg, C. O’Dell, and K. Bowman ( 2016 ), Evaluation And Attribution Of OCO‐2 XCO 2 Uncertainties, Atmos. Meas. Tech. Discuss, doi: 10.5194/amt-2016-175.
dc.identifier.citedreferenceWunch, D., P. O. Wennberg, G. C. Toon, G. Keppel‐Aleks, and Y. G. Yavin ( 2009 ), Emissions of greenhouse gases from a North American megacity, Geophys. Res. Lett., 36, L15810, doi: 10.1029/2009GL039825.
dc.identifier.citedreferenceWunch, D., et al. ( 2010 ), Calibration of the Total Carbon Column Observing Network using aircraft profile data, Atmos. Meas. Tech., 3, 1351 – 1362, doi: 10.5194/amt-3-1351-2010.
dc.identifier.citedreferenceWunch, D., G. C. Toon, J.‐F. L. Blavier, R. A. Washenfelder, J. Notholt, B. J. Connor, D. W. T. Griffith, V. Sherlock, and P. O. Wennberg ( 2011 ), The total carbon column observing network, Philos. Trans. R. Soc. London, Ser. A, 369, 2087 – 2112, doi: 10.1098/rsta.2010.0240.
dc.identifier.citedreferenceWunch, D., G. C. Toon, V. Sherlock, N. M. Deutscher, C. Liu, D. G. Feist, and P. O. Wennberg ( 2015 ), The Total Carbon Column Observing Network’s GGG2014 Data Version, 43 pp., Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
dc.identifier.citedreferenceWunch, D., G. C. Toon, J. K. Hedelius, N. Vizenor, C. M. Roehl, K. M. Saad, J.‐F. L. Blavier, D. R. Blake, and P. O. Wennberg ( 2016 ), Quantifying the loss of processed natural gas within California’s South Coast Air Basin using long‐term measurements of ethane and methane, Atmos. Chem. Phys., 16, 14091 – 14105, doi: 10.5194/acp-16-14091-2016.
dc.identifier.citedreferenceWunch, D., et al. ( 2017 ), Comparisons of the Orbiting Carbon Observatory‐2 (OCO‐2) X CO 2 measurements with TCCON, Atmos. Meas. Tech., 10, 2209 – 2238, doi: 10.5194/amt-10-2209-2017.
dc.identifier.citedreferenceYang, Z., R. A. Washenfelder, G. Keppel‐Aleks, N. Y. Krakauer, J. T. Randerson, P. P. Tans, C. Sweeney, and P. O. Wennberg ( 2007 ), New constraints on Northern Hemisphere growing season net flux, Geophys. Res. Lett., 34, L12807, doi: 10.1029/2007GL029742.
dc.identifier.citedreferenceAffek, H. P., X. Xu, and J. M. Eiler ( 2007 ), Seasonal and diurnal variations of 13 C 18 O 16 O in air: Initial observations from Pasadena, CA, Geochim. Cosmochim. Acta, 71, 5033 – 5043, doi: 10.1016/j.gca.2007.08.014.
dc.identifier.citedreferenceBrioude, J., et al. ( 2013 ), Top‐down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: Assessing anthropogenic emissions of CO, NO x and CO 2 and their impacts, Atmos. Chem. Phys., 13, 3661 – 3677, doi: 10.5194/acp-13-3661-2013.
dc.identifier.citedreferenceChen, J., C. Viatte, J. K. Hedelius, T. Jones, J. E. Franklin, H. Parker, E. W. Gottlieb, P. O. Wennberg, M. K. Dubey, and S. C. Wofsy ( 2016 ), Differential column measurements using compact solar‐tracking spectrometers, Atmos. Chem. Phys., 16, 8479 – 8498, doi: 10.5194/acp-16-8479-2016.
dc.identifier.citedreferenceCrisp, D., et al. ( 2012 ), The ACOS CO 2 retrieval algorithm—Part II: Global X CO 2 data characterization, Atmos. Meas. Tech., 5, 687 – 707, doi: 10.5194/amt-5-687-2012.
dc.identifier.citedreferenceDjuricin, S., D. E. Pataki, and X. Xu ( 2010 ), A comparison of tracer methods for quantifying CO 2 sources in an urban region, J. Geophys. Res., 115, D11303, doi: 10.1029/2009JD012236.
dc.identifier.citedreferenceDuren, R. M., and C. E. Miller ( 2012 ), Measuring the carbon emissions of megacities, Nat. Clim. Change, 2, 560 – 562, doi: 10.1038/nclimate1629.
dc.identifier.citedreferenceEldering, A., et al. ( 2017 ), The Orbiting Carbon Observatory‐2: First 18 months of science data products, Atmos. Meas. Tech., 10, 549 – 563, doi: 10.5194/amt-10-549-2017.
dc.identifier.citedreferenceEtheridge, D., L. Steele, R. Langenfelds, R. Rancey, J.‐M. Barnola, and V. Morgan ( 1996 ), Natural and anthropogenic changes in atmospheric CO 2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res., 101, 4115 – 4128, doi: 10.1029/95JD03410.
dc.identifier.citedreferenceFeldman, D. R., W. D. Collins, P. J. Gero, M. S. Torn, E. J. Mlawer, and T. R. Shippert ( 2015 ), Observational determination of surface radiative forcing by CO 2 from 2000 to 2010, Nature, 519, 339 – 343, doi: 10.1038/nature14240.
dc.identifier.citedreferenceFeng, S., et al. ( 2016 ), LA megacity: A high‐resolution land‐atmosphere modelling system for Urban CO 2 emissions, Atmos. Chem. Phys., 16, 9019 – 9045, doi: 10.5194/acp-2016-143.
dc.identifier.citedreferenceGurney, K. R., I. Razlivanow, Y. Song, Y. Zhou, B. Bedrich, and M. Abdul‐massih ( 2012 ), Quantification of fossil fuel CO 2 emissions on the building/street scale for a large U.S. City, Environ. Sci. Technol., 46, 12 194 – 12,202, doi: 10.1021/es3011282.
dc.identifier.citedreferenceHanemann, M., S. de la Rue du Can, T. Wenzel, and L. Price ( 2008 ), Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California and Spatial Disaggregated Estimate of Energy‐related Carbon Dioxide for California. [Available at http://www.arb.ca.gov/research/apr/past/05-310.pdf.]
dc.identifier.citedreferenceHase, F., M. Frey, T. Blumenstock, J. Groß, M. Kiel, R. Kohlhepp, G. Mengistu Tsidu, K. Schäfer, M. K. Sha, and J. Orphal ( 2015 ), Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin, Atmos. Meas. Tech., 8, 3059 – 3068, doi: 10.5194/amt-8-3059-2015.
dc.identifier.citedreferenceHedelius, J. K., et al. ( 2017 ), Intercomparability of X CO 2 and X CH 4 from the United States TCCON sites, Atmos. Meas. Tech., 10, 1481 – 1493, doi: 10.5194/amt-10-1481-2017.
dc.identifier.citedreferenceHersey, S. P., et al. ( 2013 ), Composition and hygroscopicity of the Los Angeles Aerosol CalNex, J. Geophys. Res. Atmos., 118, 3016 – 3036, doi: 10.1002/jgrd.50307.
dc.identifier.citedreferenceHoornweg, D., L. Sugar, M. Freire, C. Anderson, B. Perinaz, C. L. Trejos, R. Dave, M. Lee, A. Joshi‐Ghani, and Z. Allaoua ( 2010 ), Cities and Climate Change: An Urgent Agenda, World Bank, Washington, D. C.[Available at http://siteresources.worldbank.org/INTUWM/Resources/340232-1205330656272/CitiesandClimateChange.pdf.]
dc.identifier.citedreferenceIraci, L., et al. ( 2014 ), TCCON data from Armstrong Flight Research Center, Edwards, CA, USA, Release GGG2014R1, doi: 10.14291/tccon.ggg2014.edwards01.R1/1255068.
dc.identifier.citedreferenceJanardanan, R., S. Maksyutov, T. Oda, M. Saito, J. W. Kaiser, A. Ganshin, A. Stohl, T. Matsunaga, Y. Yoshida, and T. Yokota ( 2016 ), Comparing GOSAT observations of localized CO 2 enhancements by large emitters with inventory‐based estimates, Geophys. Res. Lett., 43, 3486 – 3493, doi: 10.1002/2016GL067843.
dc.identifier.citedreferenceKeppel‐Aleks, G., P. O. Wennberg, C. W. O’Dell, and D. Wunch ( 2013 ), Towards constraints on fossil fuel emissions from total column carbon dioxide, Atmos. Chem. Phys., 13, 4349 – 4357, doi: 10.5194/acp-13-4349-2013.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.