Show simple item record

Systems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells

dc.contributor.authorDecker, Joseph T.
dc.contributor.authorHobson, Eric C.
dc.contributor.authorZhang, Yining
dc.contributor.authorShin, Seungjin
dc.contributor.authorThomas, Alexandra L.
dc.contributor.authorJeruss, Jacqueline S.
dc.contributor.authorArnold, Kelly B.
dc.contributor.authorShea, Lonnie D.
dc.date.accessioned2017-08-01T19:08:30Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-09
dc.identifier.citationDecker, Joseph T.; Hobson, Eric C.; Zhang, Yining; Shin, Seungjin; Thomas, Alexandra L.; Jeruss, Jacqueline S.; Arnold, Kelly B.; Shea, Lonnie D. (2017). "Systems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells." Biotechnology and Bioengineering 114(9): 2085-2095.
dc.identifier.issn0006-3592
dc.identifier.issn1097-0290
dc.identifier.urihttps://hdl.handle.net/2027.42/137743
dc.description.abstractThe development of resistance to targeted therapeutics is a challenging issue for the treatment of cancer. Cancers that have mutations in BRCA, a DNA repair protein, have been treated with poly(ADP‐ribose) polymerase (PARP) inhibitors, which target a second DNA repair mechanism with the aim of inducing synthetic lethality. While these inhibitors have shown promise clinically, the development of resistance can limit their effectiveness as a therapy. This study investigated mechanisms of resistance in BRCA‐mutated cancer cells (HCC1937) to Olaparib (AZD2281) using TRACER, a technique for measuring dynamics of transcription factor (TF) activity in living cells. TF activity was monitored in the parental HCC1937 cell line and two distinct resistant cell lines, one with restored wild‐type BRCA1 and one with acquired resistance independent of BRCA1 for 48 h during treatment with Olaparib. Partial least squares discriminant analysis (PLSDA) was used to categorize the three cell types based on TF activity, and network analysis was used to investigate the mechanism of early response to Olaparib in the study cells. NOTCH signaling was identified as a common pathway linked to resistance in both Olaparib‐resistant cell types. Western blotting confirmed upregulation of NOTCH protein, and sensitivity to Olaparib was restored through co‐treatment with a gamma secretase inhibitor. The identification of NOTCH signaling as a common pathway contributing to PARP inhibitor resistance by TRACER indicates the efficacy of transcription factor dynamics in identifying targets for intervention in treatment‐resistant cancer and provides a new method for determining effective strategies for directed chemotherapy. Biotechnol. Bioeng. 2017;114: 2085–2095. © 2017 Wiley Periodicals, Inc.Dynamic cell response to therapy is dependent on the sensitivity of the cells to treatment. In this work, a transcriptional activity cell array (TRACER) was used to measure transcription factor activity dynamics in BRCA‐mutated breast cancer cells during treatment with Olaparib. The dynamic measurements were used to both identify sensitive and resistant cells as well as suggest therapy to resensitize resistant cells.
dc.publisherWiley Periodicals, Inc.
dc.publisherSystems Biology
dc.subject.otherdrug resistance
dc.subject.otherdata‐driven modeling
dc.subject.otherPARP inhibitors
dc.titleSystems analysis of dynamic transcription factor activity identifies targets for treatment in Olaparib resistant cancer cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelSocial Sciences
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137743/1/bit26293_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137743/2/bit26293.pdf
dc.identifier.doi10.1002/bit.26293
dc.identifier.sourceBiotechnology and Bioengineering
dc.identifier.citedreferenceSmyth GK. 2005. Limma: Linear models for microarray data. Bioinformatics and computational biology solutions using R and bioconductor. New York, NY: Springer. p 397 – 420.
dc.identifier.citedreferenceTerfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, Morris MK, van Iersel M, Lauffenburger DA, Saez‐Rodriguez J. 2012. CellNOptR: A flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst Biol 6 ( 1 ): 1.
dc.identifier.citedreferenceLedermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, Scott C, Meier W, Shapira‐Frommer R, Safra T. 2012. Olaparib maintenance therapy in platinum‐sensitive relapsed ovarian cancer. N Engl J Med 366 ( 15 ): 1382 – 1392.
dc.identifier.citedreferenceLord CJ, Ashworth A. 2013. Mechanisms of resistance to therapies targeting BRCA‐mutant cancers. Nat Med 19 ( 11 ): 1381 – 1388.
dc.identifier.citedreferenceLord CJ, Tutt AN, Ashworth A. 2015. Synthetic lethality and cancer therapy: Lessons learned from the development of PARP inhibitors. Annu Rev Med 66: 455 – 470.
dc.identifier.citedreferenceMargolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A. 2006. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 ( Suppl 1 ): S7.
dc.identifier.citedreferenceMevik B‐H, Wehrens R. 2007. The pls package: Principal component and partial least squares regression in R. J Stat Software 18 ( 2 ): 1 – 24.
dc.identifier.citedreferenceMeyer PE, Kontos K, Lafitte F, Bontempi G. 2007. Information‐theoretic inference of large transcriptional regulatory networks. EURASIP J Bioinform Syst Biol 2007 ( 1 ): 1 – 9.
dc.identifier.citedreferenceParr C, Watkins G, Jiang W. 2004. The possible correlation of Notch‐1 and Notch‐2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int J Mol Med 14: 779 – 786.
dc.identifier.citedreferenceQiu M, Peng Q, Jiang I, Carroll C, Han G, Rymer I, Lippincott J, Zachwieja J, Gajiwala K, Kraynov E. 2013. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett 328 ( 2 ): 261 – 270.
dc.identifier.citedreferenceReis‐Filho J, Tutt A. 2008. Triple negative tumours: A critical review. Histopathology 52 ( 1 ): 108 – 118.
dc.identifier.citedreferenceReya T, Morrison SJ, Clarke MF, Weissman IL. 2001. Stem cells, cancer, and cancer stem cells. Nature 414 ( 6859 ): 105 – 111.
dc.identifier.citedreferenceRobinson DR, Kalyana‐Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, Lonigro RJ. 2011. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med 17 ( 12 ): 1646 – 1651.
dc.identifier.citedreferenceRottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A. 2008. High sensitivity of BRCA1‐deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA 105 ( 44 ): 17079 – 17084.
dc.identifier.citedreferenceRouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. 2010. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10 ( 4 ): 293 – 301.
dc.identifier.citedreferenceSiletz A, Schnabel M, Kniazeva E, Schumacher AJ, Shin S, Jeruss JS, Shea LD. 2013. Dynamic transcription factor networks in epithelial‐mesenchymal transition in breast cancer models. PLoS ONE 8 ( 4 ): e57180.
dc.identifier.citedreferenceStylianou S, Clarke RB, Brennan K. 2006. Aberrant activation of notch signaling in human breast cancer. Cancer Res 66 ( 3 ): 1517 – 1525.
dc.identifier.citedreferenceYing M, Wang S, Sang Y, Sun P, Lal B, Goodwin C, Guerrero‐Cazares H, Quinones‐Hinojosa A, Laterra J, Xia S. 2011. Regulation of glioblastoma stem cells by retinoic acid: Role for Notch pathway inhibition. Oncogene 30 ( 31 ): 3454 – 3467.
dc.identifier.citedreferenceWesterhuis JA, Hoefsloot HC, Smit S, Vis DJ, Smilde AK, van Velzen EJ, van Duijnhoven JP, van Dorsten FA. 2008. Assessment of PLSDA cross validation. Metabolomics 4 ( 1 ): 81 – 89.
dc.identifier.citedreferenceWeiss M, Bernabé BP, Shin S, Asztalos S, Dubbury S, Mui M, Bellis A, Bluver D, Tonetti D, Saez‐Rodriguez J, Broadbelt LJ, Jeruss JS, Shea LD. 2014. Dynamic transcription factor activity and networks during ErbB2 breast oncogenesis and targeted therapy. Integr Biol 6 ( 12 ): 1170 – 1182.
dc.identifier.citedreferenceTutt A, Robson M, Garber J, Domchek S, Audeh M, Weitzel J, Friedlander M, Carmichael J. 2009. Phase II trial of the oral PARP inhibitor olaparib in BRCA‐deficient advanced breast cancer. J Clin Oncol 27 ( 18 ):p CRA501.
dc.identifier.citedreferenceArnold KB, Burgener A, Birse K, Romas L, Dunphy LJ, Shahabi K, Abou M, Westmacott GR, McCorrister S, Kwatampora J. 2016. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV‐susceptible target cells. Mucosal Immunol 9 ( 1 ): 194 – 205.
dc.identifier.citedreferenceArnold KB, Szeto GL, Alter G, Irvine DJ, Lauffenburger DA. 2015. CD4+ T cell‐dependent and CD4+ T cell‐independent cytokine‐chemokine network changes in the immune responses of HIV‐infected individuals. Sci Signal 8 ( 399 ): ra104.
dc.identifier.citedreferenceBallabio D, Consonni V. 2013. Classification tools in chemistry. Part 1: Linear models. PLS‐DA. Anal Methods 5 ( 16 ): 3790 – 3798.
dc.identifier.citedreferenceBarber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, Assiotis I, Rodrigues DN, Reis‐Filho JS, Moreno V. 2013. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol 229 ( 3 ): 422 – 429.
dc.identifier.citedreferenceBenedict KF, Lauffenburger DA. 2012. Insights into proteomic immune cell signaling and communication via data‐driven modeling. Systems Biology: Springer Heidelberg, Germany. p 201 – 233.
dc.identifier.citedreferenceBenjamini Y, Hochberg Y. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57: 289 – 300.
dc.identifier.citedreferenceBernabé BP, Shin S, Rios PD, Broadbelt LJ, Shea LD, Seidlits SK. 2016. Dynamic transcription factor activity networks in response to independently altered mechanical and adhesive microenvironmental cues. Integr Biol 8 ( 8 ): 844 – 860.
dc.identifier.citedreferenceBeste MT, Pfäffle‐Doyle N, Prentice EA, Morris SN, Lauffenburger DA, Isaacson KB, Griffith LG. 2014. Molecular network analysis of endometriosis reveals a role for c‐Jun‐regulated macrophage activation. Sci Transl Med 6 ( 222 ): 222ra16.
dc.identifier.citedreferenceBhola NE, Jansen VM, Koch JP, Li H, Formisano L, Williams JA, Grandis JR, Arteaga CL. 2016. Treatment of triple‐negative breast cancer with TORC1/2 inhibitors sustains a drug‐resistant and notch‐dependent cancer stem cell population. Cancer Res 76 ( 2 ): 440 – 452.
dc.identifier.citedreferenceBreiman L. 2001. Random forests. Mach Learn 45 ( 1 ): 5 – 32.
dc.identifier.citedreferenceBryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ, Helleday T. 2005. Specific killing of BRCA2‐deficient tumours with inhibitors of poly (ADP‐ribose) polymerase. Nature 434 ( 7035 ): 913 – 917.
dc.identifier.citedreferenceBuckley NE, Nic An tSaoir CB, Blayney JK, Oram LC, Crawford NT, D’Costa ZC, Quinn JE, Kennedy RD, Harkin DP, Mullan PB. 2013. BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti‐endocrine treatment of breast cancers. Nucleic Acids Res 41 ( 18 ): 8601 – 8614.
dc.identifier.citedreferenceBuege M, Mahajan PB. 2015. Clinical trials of poly (ADP‐ribose) polymerase inhibitors for cancer therapy: A review. Rev Recent Clin Trials 10 ( 4 ): 326 – 339.
dc.identifier.citedreferenceChong I‐G, Jun C‐H. 2005. Performance of some variable selection methods when multicollinearity is present. Chemometr Intell Lab Syst 78 ( 1 ): 103 – 112.
dc.identifier.citedreferenceCsardi G, Nepusz T. 2006. The igraph software package for complex network research. InterJournal Complex Syst 1695 ( 5 ): 1 – 9.
dc.identifier.citedreferenceD’Angelo RC, Ouzounova M, Davis A, Choi D, Tchuenkam SM, Kim G, Luther T, Quraishi AA, Senbabaoglu Y, Conley SJ. 2015. Notch reporter activity in breast cancer cell lines identifies a subset of cells with stem cell activity. Mol Cancer Ther 14 ( 3 ): 779 – 787.
dc.identifier.citedreferenceDull T, Zufferey R, Kelly M, Mandel R, Nguyen M, Trono D, Naldini L. 1998. A third‐generation lentivirus vector with a conditional packaging system. J Virol 72 ( 11 ): 8463 – 8471.
dc.identifier.citedreferenceFaith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS. 2007. Large‐scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol 5 ( 1 ): e8.
dc.identifier.citedreferenceFarmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434 ( 7035 ): 917 – 921.
dc.identifier.citedreferenceFord D, Easton DF, Bishop DT, Narod SA, Goldgar DE. 1994. Risks of cancer in BRCA1‐mutation carriers. Breast cancer linkage consortium. Lancet 343 ( 8899 ): 692 – 695.
dc.identifier.citedreferenceFoulkes WD, Smith IE, Reis‐Filho JS. 2010. Triple‐negative breast cancer. N Engl J Med 363 ( 20 ): 1938 – 1948.
dc.identifier.citedreferenceGelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B. 2011. Olaparib in patients with recurrent high‐grade serous or poorly differentiated ovarian carcinoma or triple‐negative breast cancer: A phase 2, multicentre, open‐label, non‐randomised study. Lancet Oncol 12 ( 9 ): 852 – 861.
dc.identifier.citedreferenceHaury A‐C, Mordelet F, Vera‐Licona P, Vert J‐P. 2012. TIGRESS: Trustful inference of gene regulation using stability selection. BMC Syst Biol 6 ( 1 ): 1.
dc.identifier.citedreferenceHenneman L, van Miltenburg MH, Michalak EM, Braumuller TM, Jaspers JE, Drenth AP, de Korte‐Grimmerink R, Gogola E, Szuhai K, Schlicker A. 2015. Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1‐deficient metaplastic breast cancer. Proc Natl Acad Sci USA 112 ( 27 ): 8409 – 8414.
dc.identifier.citedreferenceJaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, Drost R, Wientjens E, Ji J, Aly A. 2013. Loss of 53BP1 causes PARP inhibitor resistance in Brca1‐mutated mouse mammary tumors. Cancer Discov 3 ( 1 ): 68 – 81.
dc.identifier.citedreferenceJohnson N, Johnson SF, Yao W, Li Y‐C, Choi Y‐E, Bernhardy AJ, Wang Y, Capelletti M, Sarosiek KA, Moreau LA. 2013. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc Natl Acad Sci USA 110 ( 42 ): 17041 – 17046.
dc.identifier.citedreferenceKim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, Sridhara R, Lee E, Tzou A, Philip R. 2015. FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA‐mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res 21 ( 19 ): 4257 – 4261.
dc.identifier.citedreferenceKing M‐C, Marks JH, Mandell JB. 2003. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302 ( 5645 ): 643 – 646.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.