Show simple item record

Feature selective temporal prediction of Alzheimer’s disease progression using hippocampus surface morphometry

dc.contributor.authorTsao, Sinchai
dc.contributor.authorGajawelli, Niharika
dc.contributor.authorZhou, Jiayu
dc.contributor.authorShi, Jie
dc.contributor.authorYe, Jieping
dc.contributor.authorWang, Yalin
dc.contributor.authorLeporé, Natasha
dc.date.accessioned2017-08-01T19:08:48Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-07
dc.identifier.citationTsao, Sinchai; Gajawelli, Niharika; Zhou, Jiayu; Shi, Jie; Ye, Jieping; Wang, Yalin; Leporé, Natasha (2017). "Feature selective temporal prediction of Alzheimer’s disease progression using hippocampus surface morphometry." Brain and Behavior 7(7): n/a-n/a.
dc.identifier.issn2162-3279
dc.identifier.issn2162-3279
dc.identifier.urihttps://hdl.handle.net/2027.42/137757
dc.description.abstractIntroductionPrediction of Alzheimer’s disease (AD) progression based on baseline measures allows us to understand disease progression and has implications in decisions concerning treatment strategy. To this end, we combine a predictive multi‐task machine learning method (cFSGL) with a novel MR‐based multivariate morphometric surface map of the hippocampus (mTBM) to predict future cognitive scores of patients.MethodsPrevious work has shown that a multi‐task learning framework that performs prediction of all future time points simultaneously (cFSGL) can be used to encode both sparsity as well as temporal smoothness. The authors showed that this method is able to predict cognitive outcomes of ADNI subjects using FreeSurfer‐based baseline MRI features, MMSE score demographic information and ApoE status. Whilst volumetric information may hold generalized information on brain status, we hypothesized that hippocampus specific information may be more useful in predictive modeling of AD. To this end, we applied a multivariate tensor‐based parametric surface analysis method (mTBM) to extract features from the hippocampal surfaces.ResultsWe combined mTBM features with traditional surface features such as middle axis distance, the Jacobian determinant as well as 2 of the Jacobian principal eigenvalues to yield 7 normalized hippocampal surface maps of 300 points each. By combining these 7 × 300 = 2100 features together with the previous ~350 features, we illustrate how this type of sparsifying method can be applied to an entire surface map of the hippocampus that yields a feature space that is 2 orders of magnitude larger than what was previously attempted.ConclusionsBy combining the power of the cFSGL multi‐task machine learning framework with the addition of AD sensitive mTBM feature maps of the hippocampus surface, we are able to improve the predictive performance of ADAS cognitive scores 6, 12, 24, 36 and 48 months from baseline.In this work, we present our results of using machine learning to predict temporal behavior changes in Alzheimers Disease using entire topological feature maps of the hippocampus surface (2100 feature points). Our paper demonstrates that it is possible to use an entire topological map instead of just imaging derived volumetric measurements for predicting behavioral changes. We compare these results with previous results using only volumetric MR imaging features (309 features points) and show through repeated cross‐validation rounds that we are able to get better predictive power.
dc.publisherWiley Periodicals, Inc.
dc.subject.othertensor‐based morphometry
dc.subject.otherdementia
dc.subject.otherAlzheimer’s Disease
dc.subject.otherhippocampus
dc.subject.othermachine learning
dc.subject.othermulti‐task learning
dc.titleFeature selective temporal prediction of Alzheimer’s disease progression using hippocampus surface morphometry
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurology and Neurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137757/1/brb3733_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137757/2/brb3733.pdf
dc.identifier.doi10.1002/brb3.733
dc.identifier.sourceBrain and Behavior
dc.identifier.citedreferenceSun, D., van Erp, T. G., Thompson, P. M., Bearden, C. E., Daley, M., Kushan, L., … Cannon, T. D. ( 2009 ). Elucidating a magnetic resonance imaging‐based neuroanatomic biomarker for psychosis: classification analysis using probabilistic brain atlas and machine learning algorithms. Biological Psychiatry, 66 ( 11 ), 1055 – 1060.
dc.identifier.citedreferenceShi, J., Thompson, P. M., Gutman, B., & Wang, Y. ( 2013 ). Surface fluid registration of conformal representation: Application to detect disease burden and genetic influence on hippocampus. NeuroImage, 78, 111 – 134.
dc.identifier.citedreferenceShi, J., Wang, Y., Ceschin, R., An, X., Lao, Y., Vanderbilt, D., … Leporé, N. ( 2013 ). A multivariate surface‐based analysis of the putamen in premature newborns: Regional differences within the ventral striatum. PloS One, 8 ( 7 ), e66736.
dc.identifier.citedreferenceStonnington, C. M., Chu, C., Klöppel, S., Jack, C. R., Ashburner, J., Frackowiak, R. S., & Alzheimer Disease Neuroimaging Initiative ( 2010 ). Predicting clinical scores from magnetic resonance scans in Alzheimer’s disease. Neuroimage, 51 ( 4 ), 1405 – 1413.
dc.identifier.citedreferenceTakahashi, S., Yonezawa, H., Takahashi, J., Kudo, M., Inoue, T., & Tohgi, H. ( 2002 ). Selective reduction of diffusion anisotropy in white matter of Alzheimer disease brains measured by 3.0 Tesla magnetic resonance imaging. Neuroscience Letters, 332 ( 1 ), 45 – 48.
dc.identifier.citedreferenceTeipel, S. J., Born, C., Ewers, M., Bokde, A. L., Reiser, M. F., Möller, H. J., & Hampel, H. ( 2007 ). Multivariate deformation‐based analysis of brain atrophy to predict Alzheimer’s disease in mild cognitive impairment. Neuroimage, 38 ( 1 ), 13 – 24.
dc.identifier.citedreferenceTeipel, S. J., Grothe, M., Lista, S., Toschi, N., Garaci, F. G., & Hampel, H. ( 2013 ). Relevance of magnetic resonance imaging for early detection and diagnosis of Alzheimer disease. Medical Clinics of North America, 97, 399 – 424.
dc.identifier.citedreferenceThompson, P. M., Hayashi, K. M., Sowell, E. R., Gogtay, N., Giedd, J. N., Rapoport, J. L., … Toga, A. W. ( 2004 ). Mapping cortical change in Alzheimer’s disease, brain development, and schizophrenia. Neuroimage, 23, S2 – S18.
dc.identifier.citedreferencedeToledo‐Morrell, L., Stoub, T. R., Bulgakova, M., Wilson, R. S., Bennett, D. A., Leurgans, S., Wuu, J., & Turner, D. A. ( 2004 ). MRI‐derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiology of Aging, 25 ( 9 ), 1197 – 1203.
dc.identifier.citedreferenceTrambaiolli, L. R., Lorena, A. C., Fraga, F. J., Kanda, P. A., Anghinah, R., & Nitrini, R. ( 2011 ). Improving Alzheimer’s disease diagnosis with machine learning techniques. Clinical EEG and Neuroscience, 42 ( 3 ), 160 – 165.
dc.identifier.citedreferenceVemuri, P., Gunter, J. L., Senjem, M. L., Whitwell, J. L., Kantarci, K., Knopman, D. S., … Jack, C. R. ( 2008 ). Alzheimer’s disease diagnosis in individual subjects using structural MR images: validation studies. Neuroimage, 39 ( 3 ), 1186 – 1197.
dc.identifier.citedreferenceWang, Y., Chiang, M.‐C., & Thompson, P. M. ( 2005a ). Automated surface matching using mutual information applied to Riemann surface structures. CORD Conference Proceedings, 8, 666 – 674.
dc.identifier.citedreferenceWang, Y., Chiang, M.‐C., & Thompson, P. M. ( 2005b ). Mutual information‐Based 3D surface matching with applications to face recognition and brain mapping. In:. IEEE Computer Society. Vol. 1 ‐ Volume 01, Volume 01.
dc.identifier.citedreferenceWang, Y., Song, Y., Rajagopalan, P., An, T., Liu, K., Chou, Y. Y., … Alzheimer’s Disease Neuroimaging Initiative. ( 2011 ). Surface‐based TBM boosts power to detect disease effects on the brain: An N= 804 ADNI study. Neuroimage, 56 ( 4 ), 1993 – 2010.
dc.identifier.citedreferenceWang, Y., Yuan, L., Shi, J., Greve, A., Ye, J., Toga, A. W., … Thompson, P. M. ( 2010 ). Applying tensor‐based morphometry to parametric surfaces can improve MRI‐based disease diagnosis. NeuroImage, 74, 209 – 230.
dc.identifier.citedreferenceWang, Y., Yuan, L., Shi, J., Greve, A., Ye, J., Toga, A. W., … Thompson, P. M. ( 2013 ). Applying tensor‐based morphometry to parametric surfaces can improve MRI‐based disease diagnosis. Neuroimage, 74, 209 – 230.
dc.identifier.citedreferenceWang, Y., Zhang, J., Gutman, B., Chan, T. F., Becker, J. T., Aizenstein, H. J., … Thompson, P. M. ( 2010 ). Multivariate tensor‐based morphometry on surfaces: Application to mapping ventricular abnormalities in HIV/AIDS. NeuroImage, 49, 2141 – 2157.
dc.identifier.citedreferenceXu, Y., Jack, C. R., O’Brien, P. C., Kokmen, E., Smith, G. E., Ivnik, R. J., … Petersen, R. C. ( 2000 ). Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology, 54 ( 9 ), 1760 – 1767.
dc.identifier.citedreferenceYe, J., Wu, T., Li, J., & Chen, K. ( 2011 ). Machine learning approaches for the neuroimaging study of Alzheimer’s disease. Computer, 44 ( 4 ), 99 – 101.
dc.identifier.citedreferenceYoshiura, T., Mihara, F., Ogomori, K., Tanaka, A., Kaneko, K., & Masuda, K. ( 2002 ). Diffusion tensor in posterior cingulate gyrus: correlation with cognitive decline in Alzheimer’s disease. Neuroreport, 13 ( 17 ), 2299 – 2302.
dc.identifier.citedreferenceZhang, Y., Schuff, N., Ching, C., Tosun, D., Zhan, W., Nezamzadeh, M., … Weiner, M. W. ( 2011 ). Joint assessment of structural, perfusion, and diffusion MRI in Alzheimer’s disease and frontotemporal dementia. International Journal of Alzheimer’s Disease, 2011, http://dx.doi.org/10.4061/2011/546871.
dc.identifier.citedreferenceZhang, Y., Schuff, N., Du, A. T., Rosen, H. J., Kramer, J. H., Gorno‐Tempini, M. L., … Weiner, M. W. ( 2009 ). White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain, 132 ( 9 ), 2579 – 2592.
dc.identifier.citedreferenceZhang, Y., Schuff, N., Jahng, G. H., Bayne, W., Mori, S., Schad, L., … Weiner, M. W. ( 2007 ). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68 ( 1 ), 13 – 19.
dc.identifier.citedreferenceZhang, D., & Shen, D. ( 2012 ). Multi‐modal multi‐task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59, 895 – 907.
dc.identifier.citedreferenceZhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D., & Alzheimer’s Disease Neuroimaging Initiative ( 2011 ). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. Neuroimage, 55 ( 3 ), 856 – 867.
dc.identifier.citedreferenceZhou, J., Liu, J., Narayan, V. A., Ye, J., & Ye, J. ( 2013 ). Modeling disease progression via multi‐task learning. NeuroImage, 78, 233 – 248.
dc.identifier.citedreferenceBarber, R., Ballard, C., McKeith, I. G., Gholkar, A., & O’ Brien, J. T. ( 2000 ). MRI volumetric study of dementia with Lewy bodies A comparison with AD and vascular dementia. Neurology, 54 ( 6 ), 1304 – 1309.
dc.identifier.citedreferenceBaron, J. C., Chetelat, G., Desgranges, B., & Perchey, G. ( 2001 ). In vivo mapping of gray matter loss with voxel‐based morphometry in Mild Alzheimer’s Disease. NeuroImage, 14 ( 2 ), 298 – 309.
dc.identifier.citedreferenceBecker, G. A., Ichise, M., Barthel, H., Luthardt, J., Patt, M., Seese, A., … Sabri, O. ( 2013 ). PET quantification of 18F‐florbetaben binding to β‐amyloid deposits in human brains. Journal of Nuclear Medicine, 54 ( 5 ), 723 – 731.
dc.identifier.citedreferenceBlennow, K., & Zetterberg, H. ( 2013 ). The application of cerebrospinal fluid biomarkers in early diagnosis of Alzheimer disease. Medical Clinics of North America, 97, 369 – 376.
dc.identifier.citedreferenceBozzali, M., Falini, A., & Franceschi, M. ( 2002 ). White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. Journal of Neurology, Neurosurgery & Psychiatry, 72 ( 6 ), 742 – 746.
dc.identifier.citedreferenceBozzali, M., Franceschi, M., Falini, A., & Pontesilli, S. ( 2001 ). Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology, 57 ( 6 ), 1135 – 1137.
dc.identifier.citedreferenceCaselli, R. J., Locke, D. E. C., Dueck, A. C., Knopman, D. S., Woodruff, B. K., Hoffman‐Snyder, C., … Reiman, E. M. ( 2013 ). The neuropsychology of normal aging and preclinical Alzheimer’s disease. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association, 10 ( 1 ), 84 – 92.
dc.identifier.citedreferenceChoi, S. J., Lim, K. O., & Monteiro, I. ( 2005 ). Diffusion tensor imaging of frontal white matter microstructure in early Alzheimer’s disease: A preliminary study. Journal of Geriatric Psychiatry and Neurology, 18, 12 – 19.
dc.identifier.citedreferenceChua, T. C., Wen, W., & Slavin, M. J. ( 2008 ). Diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease: A review. Current Opinion in Neurology, 21, 83 – 92.
dc.identifier.citedreferenceClerx, L., Visser, P. J., Verhey, F., & Aalten, P. ( 2012 ). New MRI markers for Alzheimer’s disease: A meta‐analysis of diffusion tensor imaging and a comparison with medial temporal lobe measurements. Journal of Alzheimer’s Disease, 29, 405 – 429.
dc.identifier.citedreferenceConcha, L., Gross, D., & Beaulieu, C. ( 2005 ). Diffusion tensor tractography of the limbic system. American Journal of Neuroradiology, 26, 2267 – 2274.
dc.identifier.citedreferenceDavatzikos, C., Fan, Y., Wu, X., Shen, D., & Resnick, S. M. ( 2008 ). Detection of prodromal Alzheimer’s disease via pattern classification of magnetic resonance imaging. Neurobiology of Aging, 29, 514 – 523.
dc.identifier.citedreferenceDe Jong, L. W., Van der Hiele, K., Veer, I. M., & Houwing, J. J. ( 2008 ). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: An MRI study. Brain, 131 ( 12 ), 3277 – 3285.
dc.identifier.citedreferenceDouaud, G., Jbabdi, S., Behrens, T. E. J., Menke, R. A., Gass, A., Monsch, A. U., … Smith, S. ( 2011 ). DTI measures in crossing‐fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer’s disease. NeuroImage, 55, 880 – 890.
dc.identifier.citedreferenceElias‐Sonnenschein, L. S., Helisalmi, S., Natunen, T., Hall, A., Paajanen, T., Herukka, S.‐K., … Hiltunen, M. ( 2013 ). Genetic loci associated with Alzheimer’s disease and cerebrospinal fluid biomarkers in a Finnish case‐control cohort. PLoS ONE, 8, e59676.
dc.identifier.citedreferenceFischl, B. ( 2012 ). FreeSurfer. NeuroImage, 62, 774 – 781.
dc.identifier.citedreferenceFox, N. C., Warrington, E. K., & Freeborough, P. A. ( 1996 ). Presymptomatic hippocampal atrophy in Alzheimer’s disease A longitudinal MRI study. Brain, 119 ( 6 ), 2001 – 2007.
dc.identifier.citedreferenceFrisoni, G. B., Fox, N. C., Jack, C. R., & Scheltens, P. ( 2010 ). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6 ( 2 ), 67 – 77.
dc.identifier.citedreferenceGrossman, M., McMillan, C., Moore, P., Ding, L., & Glosser, G. ( 2004 ). What’s in a name: voxel‐based morphometric analyses of MRI and naming difficulty in Alzheimer’s disease, frontotemporal dementia and corticobasal degeneration.. Brain, 127 ( 3 ), 628 – 649.
dc.identifier.citedreferenceHajjar, I., Brown, L., Mack, W. J., & Chui, H. ( 2013 ). Alzheimer pathology and angiotension receptor blockers. JAMA Neurology, 70, 414.
dc.identifier.citedreferenceHan, X., Xu, C., & Prince, J. L. ( 2003 ). A topology preserving level set method for geometric deformable models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25 ( 6 ), 755 – 768.
dc.identifier.citedreferenceHirata, Y., Matsuda, H., Nemoto, K., Ohnishi, T., & Hirao, K. ( 2005 ). Voxel‐based morphometry to discriminate early Alzheimer’s disease from controls. Neuroscience Letters, 382 ( 3 ), 269 – 274.
dc.identifier.citedreferenceHua, X., Lee, S., Yanovsky, I., Leow, A. D., Chou, Y. Y., & Ho, A. J. ( 2009 ). Optimizing power to track brain degeneration in Alzheimer’s disease and mild cognitive impairment with tensor‐based morphometry: An ADNI study of 515 subjects. NeuroImage, 48 ( 4 ), 668 – 681.
dc.identifier.citedreferenceHua, X., Leow, A. D., Parikshak, N., Lee, S., & Chiang, M. C. ( 2008 ). Tensor‐based morphometry as a neuroimaging biomarker for Alzheimer’s disease: An MRI study of 676 AD, MCI, and normal subjects. NeuroImage, 43 ( 3 ), 458 – 469.
dc.identifier.citedreferenceHua, X., Leow, A. D., Lee, S., Klunder, A. D., Toga, A. W., Lepore, N., … Jack, C. R. ( 2008 ). 3D characterization of brain atrophy in Alzheimer’s disease and mild cognitive impairment using tensor‐based morphometry. Neuroimage, 41 ( 1 ), 19 – 34.
dc.identifier.citedreferenceJack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., … Dale, A. M. ( 2008 ). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27 ( 4 ), 685 – 691.
dc.identifier.citedreferenceJack, C. R., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., … Kokmen, E. ( 1999 ). Prediction of AD with MRI‐based hippocampal volume in mild cognitive impairment. Neurology, 52, 1397 – 1397.
dc.identifier.citedreferenceJack, C. R., Shiung, M. M., Gunter, J. L., O’brien, P. C., Weigand, S. D., Knopman, D. S., … Tangalos, E. G. ( 2004 ). Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology, 62 ( 4 ), 591 – 600.
dc.identifier.citedreferenceJahng, G.‐H., Xu, S., Weiner, M. W., Meyerhoff, D. J., Park, S., & Schuff, N. ( 2011 ). DTI studies in patients with Alzheimer’s disease, mild cognitive impairment, or normal cognition with evaluation of the intrinsic background gradients. Neuroradiology, 53, 749 – 762.
dc.identifier.citedreferenceJenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. ( 2012 ). Fsl. Neuroimage, 62 ( 2 ), 782 – 790.
dc.identifier.citedreferenceKaras, G. B., Burton, E. J., Rombouts, S. A. R. B., Van Schijndel, R. A., O’Brien, J., Scheltens, P. H., … Barkhof, F. ( 2003 ). A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel‐based morphometry. Neuroimage, 18 ( 4 ), 895 – 907.
dc.identifier.citedreferenceKilliany, R. J., Hyman, B. T., Gomez‐Isla, T. A., Moss, M. B., Kikinis, R., Jolesz, F., … Albert, M. S. ( 2002 ). MRI measures of entorhinal cortex vs hippocampus in preclinical AD. Neurology, 58 ( 8 ), 1188 – 1196.
dc.identifier.citedreferenceKlöppel, S., Stonnington, C. M., Chu, C., Draganski, B., Scahill, R. I., Rohrer, J. D., … Frackowiak, R. S. ( 2008 ). Automatic classification of MR scans in Alzheimer’s disease. Brain, 131 ( 3 ), 681 – 689.
dc.identifier.citedreferenceKlunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., … Långström, B. ( 2004 ). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Annals of Neurology, 55, 306 – 319.
dc.identifier.citedreferenceLaakso, M. P., Partanen, K., Riekkinen, P., Lehtovirta, M., Helkala, E. L., Hallikainen, M., … Soininen, H. ( 1996 ). Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia An MRI study. Neurology, 46 ( 3 ), 678 – 681.
dc.identifier.citedreferenceLao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. ( 2004 ). Morphological classification of brains via high‐dimensional shape transformations and machine learning methods. Neuroimage, 21 ( 1 ), 46 – 57.
dc.identifier.citedreferenceLeow, A., Huang, S.‐C., Geng, A., Becker, J., Davis, S., Toga, A., & Thompson, P. ( 2005 ). Inverse consistent mapping in 3D deformable image registration: Its construction and statistical properties. Information Processing in Medical Imaging, 19, 493 – 503.
dc.identifier.citedreferenceLepore, N., Brun, C., Chou, Y. Y., Chiang, M. C., Dutton, R. A., Hayashi, K. M., … Thompson, P. M. ( 2008 ). Generalized tensor‐based morphometry of HIV/AIDS using multivariate statistics on deformation tensors. IEEE Transactions on Medical Imaging, 27, 129 – 141.
dc.identifier.citedreferenceLerch, J. P., Pruessner, J. C., Zijdenbos, A., Hampel, H., Teipel, S. J., & Evans, A. C. ( 2005 ). Focal decline of cortical thickness in Alzheimer’s disease identified by computational neuroanatomy. Cerebral Cortex, 15 ( 7 ), 995 – 1001.
dc.identifier.citedreferenceLi, S., Shi, F., Pu, F., Li, X., Jiang, T., Xie, S., & Wang, Y. ( 2007 ). Hippocampal shape analysis of Alzheimer disease based on machine learning methods. American Journal of Neuroradiology, 28 ( 7 ), 1339 – 1345.
dc.identifier.citedreferenceLo, C. Y., Wang, P. N., Chou, K. H., Wang, J., He, Y., & Lin, C. P. ( 2010 ). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. Journal of Neuroscience, 30 ( 50 ), 16876 – 16885.
dc.identifier.citedreferenceLorensen, W. E., & Cline, H. E. ( 1987 ). Marching cubes: A high resolution 3D surface construction algorithm. In ACM siggraph computer graphics, 21 ( 4 ), 163 ‐ 169.
dc.identifier.citedreferenceMagnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini‐Issac, M., Colliot, O., Sarazin, M., … Benali, H. ( 2009 ). Support vector machine‐based classification of Alzheimer’s disease from whole‐brain anatomical MRI. Neuroradiology, 51 ( 2 ), 73 – 83.
dc.identifier.citedreferenceMcKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Kawas, C. H., … Mohs, R. C. ( 2011 ). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7 ( 3 ), 263 – 269.
dc.identifier.citedreferenceMorra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Avedissian, C., Madsen, S. K., … Weiner, M. W. ( 2008 ). Validation of a fully automated 3D hippocampal segmentation method using subjects with Alzheimer’s disease mild cognitive impairment, and elderly controls. Neuroimage, 43 ( 1 ), 59 – 68.
dc.identifier.citedreferenceMueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., … Beckett, L. ( 2005 ). Ways toward an early diagnosis in Alzheimer”s disease: The Alzheimer”s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association, 1 ( 1 ), 55 – 66.
dc.identifier.citedreferenceNakata, Y., Sato, N., Nemoto, K., Abe, O., Shikakura, S., Arima, K., … Aoki, S. ( 2009 ). Diffusion abnormality in the posterior cingulum and hippocampal volume: Correlation with disease progression in Alzheimer’s disease. Magnetic Resonance Imaging, 27, 347 – 354.
dc.identifier.citedreferenceOishi, K., Faria, A., Jiang, H., Li, X., Akhter, K., Zhang, J., … Mori, S. ( 2009 ). Atlas‐based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer’s disease participants. Neuroimage, 46 ( 2 ), 486 – 499.
dc.identifier.citedreferencePetersen, R. C., Jack, C. R., Xu, Y. C., Waring, S. C., O’Brien, P. C., Smith, G. E., … Kokmen, E. ( 2000 ). Memory and MRI‐based hippocampal volumes in aging and AD. Neurology, 54 ( 3 ), 581 – 587.
dc.identifier.citedreferenceRay, S., Britschgi, M., Herbert, C., Takeda‐Uchimura, Y., Boxer, A., Blennow, K., … Wyss‐Coray, T. ( 2007 ). Classification and prediction of clinical Alzheimer’s diagnosis based on plasma signaling proteins. Nature Medicine, 13 ( 11 ), 1359 – 1362.
dc.identifier.citedreferenceRidha, B. H., Barnes, J., Bartlett, J. W., Godbolt, A., Pepple, T., Rossor, M. N., & Fox, N. C. ( 2006 ). Tracking atrophy progression in familial Alzheimer’s disease: a serial MRI study. The Lancet Neurology, 5 ( 10 ), 828 – 834.
dc.identifier.citedreferenceRose, S. E., Chen, F., Chalk, J. B., Zelaya, F. O., Strugnell, W. E., Benson, M., … Doddrell, D. M. ( 2000 ). Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. Journal of Neurology, Neurosurgery & Psychiatry, 69 ( 4 ), 528 – 530.
dc.identifier.citedreferenceSalat, D. H., Buckner, R. L., Snyder, A. Z., Greve, D. N., Desikan, R. S., Busa, E., … Fischl, B. ( 2004 ). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14 ( 7 ), 721 – 730.
dc.identifier.citedreferenceScahill, R. I., Schott, J. M., & Stevens, J. M. ( 2002 ). Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid‐registered serial MRI. In:.
dc.identifier.citedreferenceSchuff, N., Woerner, N., Boreta, L., Kornfield, T., Shaw, L. M., Trojanowski, J. Q., … Alzheimer’s Disease Neuroimaging Initiative ( 2009 ). MRI of hippocampal volume loss in early Alzheimer’s disease in relation to ApoE genotype and biomarkers. Brain, 132 ( 4 ), 1067 – 1077.
dc.identifier.citedreferenceSexton, C. E., Kalu, U. G., Filippini, N., Mackay, C. E., & Ebmeier, K. P. ( 2011 ). A meta‐analysis of diffusion tensor imaging in mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 32 ( 12 ), 2322 – e5.
dc.identifier.citedreferenceShankle, W. R., Mani, S., Pazzani, M. J., & Smyth, P. ( 1997 ). Detecting very early stages of dementia from normal aging with machine learning methods. Artificial Intelligence in Medicine, 71 – 85.
dc.identifier.citedreferenceShi, J., Leporé, N., Gutman, B. A., Thompson, P. M., Baxter, L. C., Caselli, R. J., & Wang, Y. ( 2014 ). Genetic influence of apolipoprotein E4 genotype on hippocampal morphometry: An N= 725 surface‐based Alzheimer’s disease neuroimaging initiative study. Human Brain Mapping, 35 ( 8 ), 3903 – 3918.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.