Show simple item record

NSUN2‐Mediated m5C Methylation and METTL3/METTL14‐Mediated m6A Methylation Cooperatively Enhance p21 Translation

dc.contributor.authorLi, Qiu
dc.contributor.authorLi, Xiu
dc.contributor.authorTang, Hao
dc.contributor.authorJiang, Bin
dc.contributor.authorDou, Yali
dc.contributor.authorGorospe, Myriam
dc.contributor.authorWang, Wengong
dc.date.accessioned2017-08-01T19:08:52Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-09
dc.identifier.citationLi, Qiu; Li, Xiu; Tang, Hao; Jiang, Bin; Dou, Yali; Gorospe, Myriam; Wang, Wengong (2017). "NSUN2‐Mediated m5C Methylation and METTL3/METTL14‐Mediated m6A Methylation Cooperatively Enhance p21 Translation." Journal of Cellular Biochemistry 118(9): 2587-2598.
dc.identifier.issn0730-2312
dc.identifier.issn1097-4644
dc.identifier.urihttps://hdl.handle.net/2027.42/137760
dc.description.abstractN6‐methyladenosine (m6A) and m5C methylation are two major types of RNA methylation, but the impact of joint modifications on the same mRNA is unknown. Here, we show that in p21 3′UTR, NSUN2 catalyzes m5C modification and METTL3/METTL14 catalyzes m6A modification. Interestingly, methylation at m6A by METTL3/METTL14 facilitates the methylation of m5C by NSUN2, and vice versa. NSUN2‐mediated m5C and METTL3/METTL14‐mediated m6A methylation synergistically enhance p21 expression at the translational level, leading to elevated expression of p21 in oxidative stress‐induced cellular senescence. Our findings on p21 mRNA methylation and expression reveal that joint m6A and m5C modification of the same RNA may influence each other, coordinately affecting protein expression patterns. J. Cell. Biochem. 118: 2587–2598, 2017. © 2017 Wiley Periodicals, Inc.In p21 3’UTR,NSUN2 catalyzes m5C modification and METTL3/METTL14 catalyzes m6A modification. Methylation at m6A by METTL3/METTL14 facilitates the methylation of m5C by NSUN2, and vice versa. NSUN2‐mediated m5C and METTL3/METTL14‐mediated m6A methylation synergistically enhance p21 expression at the translational level, leading to elevated expression of p21 in oxidative stress‐induced cellular senescence.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherNSUN2
dc.subject.otherMETTL14
dc.subject.otherp21 mRNA METHYLATION
dc.subject.otherTRANSLATIONAL REGULATION
dc.subject.otherMETTL3
dc.titleNSUN2‐Mediated m5C Methylation and METTL3/METTL14‐Mediated m6A Methylation Cooperatively Enhance p21 Translation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137760/1/jcb25957.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137760/2/jcb25957_am.pdf
dc.identifier.doi10.1002/jcb.25957
dc.identifier.sourceJournal of Cellular Biochemistry
dc.identifier.citedreferenceSeshadri A, Dubey B, Weber MH, Varshney U. 2009. Impact of rRNA methylations on ribosome recycling and fidelity of initiation in Escherichia coli. Mol Microbiol 72: 795 – 808.
dc.identifier.citedreferenceGorospe M, Martindale JM, Sheikh MS, Fornace AJ, Jr, Holbrook NJ. 1996a. Regulation of p21 CIP1/WAF1 expression by cellular stress: P53‐dependent and ‐independent mechanisms. Mol Cell Differ 4: 47 – 65.
dc.identifier.citedreferenceGorospe M, Wang X, Guyton K, Holbrook NJ. 1996b. Protective role of p21 Waf1/Cip1 against prostaglandin A 2 ‐mediated apoptosis of human colorectal carcinoma cells. Mol Cell Biol 116: 6654 – 6660.
dc.identifier.citedreferenceGorospe M, Holbrook NJ. 1996. Role of p21 in prostaglandin A 2 ‐mediated cellular arrest and death. Cancer Res 156: 475 – 479.
dc.identifier.citedreferenceGorospe M, Cirielli C, Wang X, Seth P, Capogrossi M, Holbrook NJ. 1997. P21 Waf1/Cip1 protects against p53‐mediated apoptosis of human melanoma cells. Oncogene 114: 929 – 935.
dc.identifier.citedreferenceHussain S, Sajini AA, Blanco S, Dietmann S, Lombard P, Sugimoto Y, Paramor M, Gleeson JG, Odom DT, Ule J, Frye M. 2013. NSun2‐Mediated cytosine‐5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep 4: 255 – 261.
dc.identifier.citedreferenceIakova P, Wang GL, Timchenko L, Michalak M, Pereira‐Smith OM, Smith JR, Timchenko NA. 2004. Competition of CUGBP1 and calreticulin for the regulation of p21 translation determines cell fate. EMBO J 23: 406 – 417.
dc.identifier.citedreferenceJi L, Chen X. 2005. Regulation of small RNA stability: Methylation and beyond. Cell Res 22: 624 – 636.
dc.identifier.citedreferenceLal A, Mazan‐Mamczarz K, Kawai T, Yang X, Martindale JL, Gorospe M. 2004. Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. EMBO J 23: 3092 – 3102.
dc.identifier.citedreferenceLi XY, Xiong XS, Wang K, Wang LX, Shu XT, Ma SQ, Yi CQ. 2016. TranscrIptome‐wide mapping reveals reversible and dynamic N (1)‐methyladenosine methylome. Nat Chem Biol 12: 311 – 316.
dc.identifier.citedreferenceLin S, Gregory RI. 2014. Methyltransferases modulate RNA stability in embryonic stem cells. Nat Cell Biol 16: 129 – 131.
dc.identifier.citedreferenceLiu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C. 2014. A METTL3‐METTL14 complex mediates mammalian nuclear RNA N6‐adenosine methylation. Nat Chem Biol 10: 93 – 95.
dc.identifier.citedreferenceLuo Y, Feng J, Xu Q, Wang W, Wang X. 2016. NSun2 deficiency protects endothelium from inflammation via mRNA methylation of ICAM‐1. Circ Res 118: 944 – 956.
dc.identifier.citedreferenceMeyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149: 1635 – 1646.
dc.identifier.citedreferencePersson BC, Gustafsson C, Berg DE, Björk GR. 1992. The gene for a tRNA modifying enzyme, m5U54‐methyltransferase, is essential for viability in Escherichia coli. Proc Natl Acad Sci USA 89: 3995 – 3998.
dc.identifier.citedreferencePing XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, Zhao X, Li A, Yang Y, Dahal U, Lou XM, Liu X, Huang J, Yuan WP, Zhu XF, Cheng T, Zhao YL, Wang X, Rendtlew Danielsen JM, Liu F, Yang YG. 2014. Mammalian WTAP is a regulatory subunit of the RNA N6‐methyladenosine methyltransferase. Cell Res 24: 177 – 189.
dc.identifier.citedreferenceSchaefer M, Pollex T, Hanna K, Tuorto F, Meusburger M, Helm M, Lyko F. 2010. RNA methylation by Dnmt2 protects transfer RNAs against stress‐induced cleavage. Genes Dev 24: 1590 – 1595.
dc.identifier.citedreferenceSquires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT, Parker BJ, Suter CM, Preiss T. 2012. Widespread occurrence of 5‐methylcytosine in human coding and non‐coding RNA. Nucleic Acids Res 40: 5023 – 5033.
dc.identifier.citedreferenceTang H, Fan X, Xing J, Liu Z, Jiang B, Dou Y, Gorospe M, Wang W. 2015. NSUN2 delays replicative senescence by repressing p27 (KIP1) translation and elevating CDK1 translation. Aging (Albany NY) 7: 1143 – 1158.
dc.identifier.citedreferenceTimchenko NA, Wilde M, Nakanishi M, Smith JR, Darlington GJ. 1996. CCAAT/enhancer‐binding protein α (C/EBP α) inhibits cell proliferation through the p21 (WAF‐1/CIP‐1/SDI‐1) protein. Genes Dev 10: 804 – 815.
dc.identifier.citedreferenceWaldman T, Lengauer C, Kinzler KW, Vogelstein B. 1996. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 831: 713 – 716.
dc.identifier.citedreferenceWang W, Furneaux H, Cheng H, Caldwell MC, Hutter D, Liu Y, Holbrook N, Gorospe M. 2000. HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol 20: 760 – 769.
dc.identifier.citedreferenceWang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. 2014. N6‐methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16: 191 – 198.
dc.identifier.citedreferenceXing J, Yi J, Cai X, Tang H, Liu Z, Zhang X, Martindale JL, Yang X, Jiang B, Gorospe M, Wang W. 2015. NSUN2 promotes cell growth via elevating CDK1 translation. Mol Cell Biol 35: 4043 – 4052.
dc.identifier.citedreferenceYuan S, Tang H, Xing J, Fan X, Cai X, Li Q, Han P, Luo Y, Zhang Z, Jiang B, Dou Y, Gorospe M, Wang W. 2014. Methylation by NSUN2 represses the levels and function of miR‐125b. Mol Cell Biol 34: 3630 – 3641.
dc.identifier.citedreferenceZhang X, Liu Z, Yi J, Tang H, Xing J, Yu M, Tong T, Shang Y, Gorospe M, Wang W. 2012. NSUN2 stabilizes p16INK4 mRNA by methylating the p16 3′UTR. Nat Commun 3: 712.
dc.identifier.citedreferenceZhao BS, Roundtree IA, He C. 2017. Post‐transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18: 31 – 42.
dc.identifier.citedreferenceBlanco S, Bandiera R, Popis M, Hussain S, Lombard P, Aleksic J, Sajini A, Tanna H, Cortés‐Garrido R, Gkatza N, Dietmann S, Frye M. 2016. Stem cell function and stress response are controlled by protein synthesis. Nature 534: 335 – 340.
dc.identifier.citedreferenceBlanco S, Kurowski A, Nichols J, Watt FM, Benitah SA, Frye M. 2011. The RNA‐methyltransferase Misu (NSun2) poises epidermal stem cells to differentiate. PLoS Genet 7 ( 12 ): e1002403.
dc.identifier.citedreferenceBjörk GR, Ericson JU, Gustafsson CE, Hagervall TG, Jönsson YH, Wikström PM. 1987. Transfer RNA modification. Annu Rev Biochem 56: 263 – 287.
dc.identifier.citedreferenceCai X, Hu Y, Tang H, Hu H, Pang L, Xing J, Liu Z, Luo Y, Jiang B, Liu T, Gorospe M, Chen C, Wang W. 2016. RNA methyltransferase NSUN2 promotes stress‐induced HUVEC senescence. Oncotarget 7: 19099 – 19110.
dc.identifier.citedreferenceCarroll SM, Narayan P, Rottman FM. 1990. N6‐methyladenosine residues in an intron‐specific region of prolactin pre‐mRNA. Mol Cell Biol 10: 4456 – 4465.
dc.identifier.citedreferenceDas G, Thotala DK, Kapoor S, Karunanithi S, Thakur SS, Singh NS, Varshney U. 2008. Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli. EMBO J 27: 840 – 851.
dc.identifier.citedreferenceDeng C, Zhang P, Harper JW, Elledge SJ, Leder P. 1995. Mice lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675 – 684.
dc.identifier.citedreferenceDominissini D, Moshitch‐Moshkovitz S, Schwartz S, Salmon‐Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob‐Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A‐seq. Nature 485: 201 – 206.
dc.identifier.citedreferenceDubin DT, Taylor RH. 1975. The methylation state of poly A‐containing messenger RNA from cultured hamster cells. Nucleic Acids Res 2: 1653 – 1668.
dc.identifier.citedreferenceGartel AL, Tyner AL. 1999. Transcriptional regulation of the p21((WAF1/CIP1)) gene. Exp Cell Res 246: 280 – 289.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.