Show simple item record

A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models

dc.contributor.authorBrouwer, Andrew F.
dc.contributor.authorMeza, Rafael
dc.contributor.authorEisenberg, Marisa C.
dc.date.accessioned2017-08-01T19:09:10Z
dc.date.available2018-08-07T15:51:23Zen
dc.date.issued2017-07
dc.identifier.citationBrouwer, Andrew F.; Meza, Rafael; Eisenberg, Marisa C. (2017). "A Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models." Risk Analysis 37(7): 1375-1387.
dc.identifier.issn0272-4332
dc.identifier.issn1539-6924
dc.identifier.urihttps://hdl.handle.net/2027.42/137771
dc.publisherJohn Wiley & Sons
dc.subject.othermultistage clonal expansion model
dc.subject.otheridentifiability
dc.subject.otherdifferential algebra
dc.subject.otherContinuous‐time Markov process
dc.titleA Systematic Approach to Determining the Identifiability of Multistage Carcinogenesis Models
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBusiness (General)
dc.subject.hlbtoplevelBusiness and Economics
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137771/1/risa12684_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/137771/2/risa12684.pdf
dc.identifier.doi10.1111/risa.12684
dc.identifier.sourceRisk Analysis
dc.identifier.citedreferenceHeidenreich WF. On the parameters of the clonal expansion model. Radiation and Environmental Biophysics, 1996; 35 ( 2 ): 127 – 129.
dc.identifier.citedreferenceLittle MP, Heidenreich WF, Li G. Parameter identifiability and redundancy in a general class of stochastic carcinogenesis models. PLOS One, 2009; 4 ( 12 ): 1 – 6.
dc.identifier.citedreferenceEisenberg MC, Robertson SL, Tien JH. Identifiability and estimation of multiple transmission pathways in cholera and waterborne disease. Journal of Theoretical Biology, 2013; 324: 84 – 102.
dc.identifier.citedreferenceEisenberg M. Generalizing the differential algebra approach to input–output equations in structural identifiability. arXiv, 2013; (arXiv:1302.5484v1): 1 – 11.
dc.identifier.citedreferenceDewanji A, Venzon DJ, Moolgavkar SH. A stochastic two‐stage model for cancer risk assessment. II. The number and size of premalignant clones. Risk Analysis, 1989; 9 ( 2 ): 179 – 187.
dc.identifier.citedreferenceMoolgavkar S, Luebeck G. Two‐event model for carcinogenesis: Biological, mathematical, and statistical considerations. Risk Analysis, 1990; 10 ( 2 ): 323 – 341.
dc.identifier.citedreferenceTan WY. Stochastic Models of Carcinogenesis. New York: Marcel Dekker, 1991.
dc.identifier.citedreferenceCrump KS, Subramaniam RP, Van Landingham CB. A numerical solution to the nonhomogeneous two‐stage MVK model of cancer. Risk Analysis, 2005; 25 ( 4 ): 921 – 926.
dc.identifier.citedreferenceMeza R. Some Extensions and Applications of Multistage Carcinogenesis Models. Dissertation. Seattle, WA: University of Washington, 2006.
dc.identifier.citedreferenceBrouwer AF. Models of HPV as an Infectious Disease and as an Etiological Agent of Cancer. Dissertation. Ann Arbor, MI: University of Michigan, 2015.
dc.identifier.citedreferenceMeshkat N, Anderson C, DiStefano JJ. Alternative to Ritt’s pseudodivision for finding the input‐output equations of multi‐output models. Mathematical Biosciences, 2012; 239 ( 1 ): 117 – 123.
dc.identifier.citedreferenceLjung L, Glad T. On global identifiability for arbitrary model parametrizations. Automatica, 1994; 30 ( 2 ): 265 – 276.
dc.identifier.citedreferenceLuebeck E, Curtius K, Jeon J, Hazelton W. Impact of tumor progression on cancer incidence curves. Cancer Research, 2013; 73 ( 3 ): 1086 – 1096.
dc.identifier.citedreferenceMoolgavkar SH, Meza R, Turim J. Pleural and peritoneal mesotheliomas in SEER: Age effects and temporal trends, 1973‐2005. Cancer Causes & Control, 2009; 20 ( 6 ): 935 – 944.
dc.identifier.citedreferenceLuebeck EG, Heidenreich WF, Hazelton WD, Paretzke HG, Moolgavkar SH. Biologically based analysis of the data for the Colorado uranium miners cohort: Age, dose and dose‐rate effects. Radiation Research, 1999; 152 ( 4 ): 339 – 351.
dc.identifier.citedreferenceHazelton WD, Luebeck EG, Heidenreich WF, Moolgavkar SH. Analysis of a historical cohort of Chinese tin miners with arsenic, radon, cigarette smoke, and pipe smoke exposures using the biologically based two‐stage clonal expansion model. Radiation Research, 2001; 156 ( 1 ): 78 – 94.
dc.identifier.citedreferenceMeza R, Hazelton WD, Colditz GA, Moolgavkar SH. Analysis of lung cancer incidence in the nurses’ health and the health professionals’ follow‐up studies using a multistage carcinogenesis model. Cancer Causes & Control: CCC, 2008; 19 ( 3 ): 317 – 328.
dc.identifier.citedreferenceRichardson DB. Multistage modeling of leukemia in benzene workers: A simple approach to fitting the 2‐stage clonal expansion model. American Journal of Epidemiology, 2009; 169 ( 1 ): 78 – 85.
dc.identifier.citedreferenceBellu G, Saccomani MP, Audoly S, D’Angiò L. DAISY: A new software tool to test global identifiability of biological and physiological systems. Computer Methods and Programs in Biomedicine, 2007; 88 ( 1 ): 52 – 61.
dc.identifier.citedreferenceMoolgavkar SH, Venzon DJ. Two‐event models for carcinogenesis: Incidence curves for childhood and adult tumors. Mathematical Biosciences, 1979; 47 ( 1–2 ): 55 – 77.
dc.identifier.citedreferenceMoolgavkar SH, Knudson AG. Mutation and cancer: A model for human carcinogenesis. Journal of the National Cancer Institute, 1981; 66 ( 6 ): 1037 – 1052.
dc.identifier.citedreferenceLittle MP. Are two mutations sufficient to cause cancer? Some generalizations of the two‐mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Biometrics, 1995; 4: 1278 – 1291.
dc.identifier.citedreferenceLittle MP, Haylock RGE, Muirhead CR. Modelling lung tumour risk in radon‐exposed uranium miners using generalizations of the two‐mutation model of Moolgavkar, Venzon and Knudson. International Journal of Radiation Biology, 2002; 78 ( 1 ): 49 – 68.
dc.identifier.citedreferenceLuebeck EG, Moolgavkar SH. Multistage carcinogenesis and the incidence of colorectal cancer. Proceedings of the National Academy of Sciences, 2002; 99 ( 23 ): 15095 – 15100.
dc.identifier.citedreferenceMeza R, Luebeck EG, Moolgavkar SH. Gestational mutations and carcinogenesis. Mathematical Biosciences, 2005; 197 ( 2 ): 188 – 210.
dc.identifier.citedreferenceHazelton WD, Moolgavkar SH, Curtis SB, Zielinski JM, Ashmore JP, Krewski D. Biologically based analysis of lung cancer incidence in a large Canadian occupational cohort with low‐dose ionizing radiation exposure, and comparison with Japanese atomic bomb survivors. Journal of Toxicology and Environmental Health Part A, 2006; 69 ( 11 ): 1013 – 1038.
dc.identifier.citedreferenceJeon J, Luebeck EG, Moolgavkar SH. Age effects and temporal trends in adenocarcinoma of the esophagus and gastric cardia (United States). Cancer Causes & Control, 2006; 17 ( 7 ): 971 – 981.
dc.identifier.citedreferenceJeon J, Meza R, Moolgavkar SH, Luebeck EG. Evaluation of screening strategies for pre‐malignant lesions using a biomathematical approach. Mathematical Biosciences, 2008; 213 ( 1 ): 56 – 70.
dc.identifier.citedreferenceLuebeck EG, Moolgavkar SH, Liu AY, Boynton A, Ulrich CM. Does folic acid supplementation prevent or promote colorectal cancer? Results from model‐based predictions. Cancer Epidemiology, Biomarkers & Prevention, 2008; 17 ( 6 ): 1360 – 1367.
dc.identifier.citedreferenceMeza R, Jeon J, Moolgavkar SH, Luebeck EG. Age‐specific incidence of cancer: Phases, transitions, and biological implications. Proceedings of the National Academy of Sciences, 2008; 105 ( 42 ): 16284 – 16289.
dc.identifier.citedreferenceMeza R, Jeon J, Moolgavkar S. Quantitative cancer risk assessment of nongenotoxic carcinogens. Pp. 636 – 658 in Hsu CH, Stedeford T (eds). Cancer Risk Assessment. Hoboken, NJ: John Wiley & Sons, Inc., 2010.
dc.identifier.citedreferenceMeza R, Jeon J, Renehan AG, Luebeck EG. Colorectal cancer incidence trends in the United States and United Kingdom: Evidence of right‐ to left‐sided biological gradients with implications for screening. Cancer Research, 2010; 70 ( 13 ): 5419 – 5429.
dc.identifier.citedreferenceDewanji A, Jeon J, Meza R, Luebeck EG. Number and size distribution of colorectal adenomas under the multistage clonal expansion model of cancer. PLOS Computational Biology, 2011; 7 ( 10 ): e1002213.
dc.identifier.citedreferenceHazelton WD, Curtius K, Inadomi JM, Vaughan TL, Meza R, Rubenstein JH, Hur C, Luebeck EG. The role of gastroesophageal reflux and other factors during progression to esophageal adenocarcinoma. Cancer Epidemiology Biomarkers and Prevention, 2015; 24 ( 7 ): 1 – 6.
dc.identifier.citedreferenceBrouwer AF, Eisenberg MC, Meza R. Age effects and temporal trends in HPV‐related and HPV‐unrelated oral cancer in the United States: A multistage carcinogenesis modeling analysis. PLOS One, 2016; 11 ( 3 ): e0151098.
dc.identifier.citedreferenceBellman R, Åström KJ. On structural identifiability. Mathematical Biosciences, 1970; 7: 329 – 339.
dc.identifier.citedreferenceRothenberg TJ. Identification in parametric models. Econometrica, 1971; 39 ( 3 ): 577 – 591.
dc.identifier.citedreferenceCobelli C, DiStefano JJ. Parameter and structural identifiability concepts and ambiguities: A critical review and analysis. American Journal of Physiology, 1980; 239: R7 – R24.
dc.identifier.citedreferenceRaue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J. Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics, 2009; 25 ( 15 ): 1923 – 1929.
dc.identifier.citedreferenceSaccomani MP, Audoly S, Bellu G, D’Angio L. A new differential algebra algorithm to test identifiability of nonlinear systems with given initial conditions. Pp. 4:3108 –4: 3113 in Proceedings of the 40th IEEE Conference on Decision and Control, 2001.
dc.identifier.citedreferencePohjanpalo H. System identifiability based on the power series expansion of the solution. Mathematical Biosciences, 1978; 41 ( 1–2 ): 21 – 33.
dc.identifier.citedreferenceVajda S, Godfrey KR, Rabitz H. Similarity transformation approach to identifiability analysis of nonlinear compartmental models. Mathematical Biosciences, 1989; 93: 217 – 248.
dc.identifier.citedreferenceChappell MJ, Godfrey KR, Vajda S. Global identifiability of the parameters of nonlinear systems with specified inputs: A comparison of methods. Mathematical Biosciences, 1990; 102: 41 – 73.
dc.identifier.citedreferenceEvans ND, Chappell MJ. Extensions to a procedure for generating locally identifiable reparameterisations of unidentifiable systems. Mathematical Biosciences, 2000; 168: 137 – 159.
dc.identifier.citedreferenceAudoly S, Bellu G, D’Angiò L, Saccomani MP, Cobelli C. Global identifiability of nonlinear models of biological systems. IEEE Transactions on Biomedical Engineering, 2001; 48 ( 1 ): 55 – 65.
dc.identifier.citedreferenceMeshkat N, Eisenberg M, Distefano JJ. An algorithm for finding globally identifiable parameter combinations of nonlinear ODE models using Gröbner bases. Mathematical Biosciences, 2009; 222 ( 2 ): 61 – 72.
dc.identifier.citedreferenceRaue A, Karlsson J, Saccomani MP, Jirstrand M, Timmer J. Comparison of approaches for parameter identifiability analysis of biological systems. Bioinformatics, 2014; 30: 1440 – 1448.
dc.identifier.citedreferenceHeidenreich WF, Luebeck EG, Moolgavkar SH. Some properties of the hazard function of the two‐mutation clonal expansion model. Risk Analysis, 1997; 17 ( 3 ): 391 – 399.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.