Show simple item record

Phase I study of bortezomib in combination with irinotecan in patients with relapsed/refractory high‐risk neuroblastoma

dc.contributor.authorMody, Rajen
dc.contributor.authorZhao, Lili
dc.contributor.authorYanik, Gregory Anthony
dc.contributor.authorOpipari, Valerie
dc.date.accessioned2017-10-05T18:16:15Z
dc.date.available2019-01-07T18:34:35Zen
dc.date.issued2017-11
dc.identifier.citationMody, Rajen; Zhao, Lili; Yanik, Gregory Anthony; Opipari, Valerie (2017). "Phase I study of bortezomib in combination with irinotecan in patients with relapsed/refractory high‐risk neuroblastoma." Pediatric Blood & Cancer 64(11): n/a-n/a.
dc.identifier.issn1545-5009
dc.identifier.issn1545-5017
dc.identifier.urihttps://hdl.handle.net/2027.42/138203
dc.description.abstractPurposePrognosis for relapsed/refractory high‐risk neuroblastoma (HR‐NBL) remains poor. Bortezomib, a proteasome inhibitor, has shown preclinical activity against NBL as a single agent and in combination with cytotoxic chemotherapy including irinotecan.Patients and MethodsEighteen HR‐NBL patients with primary refractory (n = 8) or relapsed (n = 10) disease were enrolled in a Phase I study using modified Time To Event Continual Reassessment Method. Bortezomib (1.2 mg/m2/day) was administered on days 1, 4, 8, and 11 intravenously (IV) and irinotecan was given IV on days 1–5 (35, 40, or 45 mg/m2/day, on dose levels [DL] 1–3, respectively). The maximum tolerated dose (MTD), dose‐limiting toxicity (DLT), and response rate were examined.ResultsEighteen NBL patients were evaluable for toxicity; 17 were evaluable for response assessment. A total of 142 courses were delivered (mean 8.2, median 2, range 1–48), with two patients receiving more than 40 courses of therapy. Two DLTs were reported, including a grade 4 thrombocytopenia (DL2) and a grade 3 irritability (DL3). MTD was estimated as DL3. Two of 17 (12%) evaluable patients showed objective responses (ORs) lasting more than 40 courses, including 1 partial remission and 1 complete remission. Four patients (23%) had prolonged stable disease (SD) lasting six or more courses, with a total of 35% study patients demonstrating clinical benefit in the form of prolonged OR or SD.ConclusionThe combination of bortezomib and irinotecan was well tolerated by patients with relapsed/refractory NBL with favorable toxicity profile. It also showed modest but promising clinical activity and merits further testing in Phase II studies.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherrelapsed/refractory high‐risk neuroblastoma
dc.subject.otherproteasome inhibitor
dc.subject.otheririnotecan
dc.titlePhase I study of bortezomib in combination with irinotecan in patients with relapsed/refractory high‐risk neuroblastoma
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138203/1/pbc26563.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138203/2/pbc26563_am.pdf
dc.identifier.doi10.1002/pbc.26563
dc.identifier.sourcePediatric Blood & Cancer
dc.identifier.citedreferenceMitsiades N, Mitsiades CS, Richardson PG, et al. The proteasome inhibitor PS‐341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents: therapeutic applications. Blood. 2003; 101 ( 6 ): 2377 – 2380.
dc.identifier.citedreferenceOnar A, Kocak M, Boyett JM. Continual reassessment method vs. traditional empirically based design: modifications motivated by Phase I trials in pediatric oncology by the Pediatric Brain Tumor Consortium. J Biopharm Stat. 2009; 19 ( 3 ): 437 – 455.
dc.identifier.citedreferenceTrotti A, Colevas AD, Setser A, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003; 13 ( 3 ): 176 – 181.
dc.identifier.citedreferenceDimopoulos MA, Mateos MV, Richardson PG, et al. Risk factors for, and reversibility of, peripheral neuropathy associated with bortezomib‐melphalan‐prednisone in newly diagnosed patients with multiple myeloma: subanalysis of the phase 3 VISTA study. Eur J Haematol. 2011; 86 ( 1 ): 23 – 31.
dc.identifier.citedreferenceTherasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst. 2000; 92 ( 3 ): 205 – 216.
dc.identifier.citedreferenceBrodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993; 11 ( 8 ): 1466 – 1477.
dc.identifier.citedreferenceKaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958; 53 ( 282 ): 457 – 481.
dc.identifier.citedreferenceRichardson PG, Briemberg H, Jagannath S, et al. Frequency, characteristics, and reversibility of peripheral neuropathy during treatment of advanced multiple myeloma with bortezomib. J Clin Oncol. 2006; 24 ( 19 ): 3113 – 3120.
dc.identifier.citedreferenceHideshima T, Mitsiades C, Akiyama M, et al. Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS‐341. Blood. 2003; 101 ( 4 ): 1530 – 1534.
dc.identifier.citedreferenceBrignole C, Marimpietri D, Pastorino F, et al. Effect of bortezomib on human neuroblastoma cell growth, apoptosis, and angiogenesis. J Natl Cancer Inst. 2006; 98 ( 16 ): 1142 – 1157.
dc.identifier.citedreferenceHamner JB, Dickson PV, Sims TL, et al. Bortezomib inhibits angiogenesis and reduces tumor burden in a murine model of neuroblastoma. Surgery. 2007; 142 ( 2 ): 185 – 191.
dc.identifier.citedreferenceCorso A, Mangiacavalli S, Varettoni M, et al. Bortezomib‐induced peripheral neuropathy in multiple myeloma: a comparison between previously treated and untreated patients. Leuk Res. 2010; 34 ( 4 ): 471 – 474.
dc.identifier.citedreferencePaoletti X, Kramar A. A comparison of model choices for the Continual Reassessment Method in phase I cancer trials. Stat Med. 2009; 28 ( 24 ): 3012 – 3028.
dc.identifier.citedreferenceShen L, O’Quigley JO. Consistency of continual reassessment method under model misspecification. Biometrika. 1996; 83 ( 2 ): 395 – 405.
dc.identifier.citedreferenceVan Rensburg CE, Slabbert JP, Bohm L. Influence of irinotecan and SN‐38 on the irradiation response of WHO3 human oesophageal tumour cells under hypoxic conditions. Anticancer Res. 2006; 26 ( 1A ): 389 – 393.
dc.identifier.citedreferenceZeng YC, Yu L, Xiao YP, et al. Radiation enhancing effects with the combination of sanazole and irinotecan in hypoxic HeLa human cervical cancer cell line. J BUON. 2013; 18 ( 3 ): 713 – 716.
dc.identifier.citedreferenceWardman P. Chemical radiosensitizers for use in radiotherapy. Clin Oncol (R Coll Radiol). 2007; 19 ( 6 ): 397 – 417.
dc.identifier.citedreferenceGoel A, Dispenzieri A, Greipp PR, et al. PS‐341‐mediated selective targeting of multiple myeloma cells by synergistic increase in ionizing radiation‐induced apoptosis. Exp Hematol. 2005; 33 ( 7 ): 784 – 795.
dc.identifier.citedreferenceKamer S, Ren Q, Dicker AP. Differential radiation sensitization of human cervical cancer cell lines by the proteasome inhibitor velcade (bortezomib, PS‐341). Arch Gynecol Obstet. 2009; 279 ( 1 ): 41 – 46.
dc.identifier.citedreferenceMerz M, Salwender H, Haenel M, et al. Subcutaneous versus intravenous bortezomib in two different induction therapies for newly diagnosed multiple myeloma: an interim analysis from the prospective GMMG‐MM5 trial. Haematologica. 2015; 100 ( 7 ): 964 – 969.
dc.identifier.citedreferenceKreissman SG, Seeger RC, Matthay KK, et al. Purged versus non‐purged peripheral blood stem‐cell transplantation for high‐risk neuroblastoma (COG A3973): a randomised phase 3 trial. Lancet Oncol. 2013; 14 ( 10 ): 999 – 1008.
dc.identifier.citedreferenceMatthay KK, Reynolds CP, Seeger RC, et al. Long‐term results for children with high‐risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13‐cis‐retinoic acid: a children’s oncology group study. J Clin Oncol. 2009; 27 ( 7 ): 1007 – 1013.
dc.identifier.citedreferencePearson AD, Pinkerton CR, Lewis IJ, et al. High‐dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008; 9 ( 3 ): 247 – 256.
dc.identifier.citedreferenceBagatell R, London WB, Wagner LM, et al. Phase II study of irinotecan and temozolomide in children with relapsed or refractory neuroblastoma: a Children’s Oncology Group study. J Clin Oncol. 2011; 29 ( 2 ): 208 – 213.
dc.identifier.citedreferenceMoreno L, Rubie H, Varo A, et al. Outcome of children with relapsed or refractory neuroblastoma: a meta‐analysis of ITCC/SIOPEN European phase II clinical trials. Pediatr Blood Cancer. 2017; 64 ( 1 ): 25 – 31.
dc.identifier.citedreferenceBasta NO, Halliday GC, Makin G, et al. Factors associated with recurrence and survival length following relapse in patients with neuroblastoma. Br J Cancer. 2016; 115 ( 9 ): 1048 – 1057.
dc.identifier.citedreferenceWagner LM, Villablanca JG, Stewart CF, et al. Phase I trial of oral irinotecan and temozolomide for children with relapsed high‐risk neuroblastoma: a new approach to neuroblastoma therapy consortium study. J Clin Oncol. 2009; 27 ( 8 ): 1290 – 1296.
dc.identifier.citedreferenceHoughton PJ, Stewart CF, Cheshire PJ, et al. Antitumor activity of temozolomide combined with irinotecan is partly independent of O6‐methylguanine‐DNA methyltransferase and mismatch repair phenotypes in xenograft models. Clin Cancer Res. 2000; 6 ( 10 ): 4110 – 4118.
dc.identifier.citedreferenceThompson J, Zamboni WC, Cheshire PJ, et al. Efficacy of systemic administration of irinotecan against neuroblastoma xenografts. Clin Cancer Res. 1997; 3 ( 3 ): 423 – 431.
dc.identifier.citedreferenceVassal G, Pondarre C, Cappelli C, et al. DNA‐topoisomerase I, a new target for the treatment of neuroblastoma. Eur J Cancer. 1997; 33 ( 12 ): 2011 – 2015.
dc.identifier.citedreferenceShitara T, Shimada A, Hanada R, et al. Irinotecan for children with relapsed solid tumors. Pediatr Hematol Oncol. 2006; 23 ( 2 ): 103 – 110.
dc.identifier.citedreferenceBomgaars L, Kerr J, Berg S, et al. A phase I study of irinotecan administered on a weekly schedule in pediatric patients. Pediatr Blood Cancer. 2006; 46 ( 1 ): 50 – 55.
dc.identifier.citedreferenceKushner BH, Kramer K, Modak S, et al. Five‐day courses of irinotecan as palliative therapy for patients with neuroblastoma. Cancer. 2005; 103 ( 4 ): 858 – 862.
dc.identifier.citedreferenceMugishima H, Matsunaga T, Yagi K, et al. Phase I study of irinotecan in pediatric patients with malignant solid tumors. J Pediatr Hematol Oncol. 2002; 24 ( 2 ): 94 – 100.
dc.identifier.citedreferenceBlaney S, Berg SL, Pratt C, et al. A phase I study of irinotecan in pediatric patients: a pediatric oncology group study. Clin Cancer Res. 2001; 7 ( 1 ): 32 – 37.
dc.identifier.citedreferenceAdams J, Palombella VJ, Sausville EA, et al. Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res. 1999; 59 ( 11 ): 2615 – 2622.
dc.identifier.citedreferenceTeicher BA, Ara G, Herbst R, et al. The proteasome inhibitor PS‐341 in cancer therapy. Clin Cancer Res. 1999; 5 ( 9 ): 2638 – 2645.
dc.identifier.citedreferenceHochstrasser M. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol. 1995; 7 ( 2 ): 215 – 223.
dc.identifier.citedreferenceYang HJ, Wang M, Wang L, et al. NF‐kappaB regulates caspase‐4 expression and sensitizes neuroblastoma cells to Fas‐induced apoptosis. PLoS ONE. 2015; 10 ( 2 ): e0117953.
dc.identifier.citedreferenceYang HJ, Wang L, Xia YY, et al. NF‐kappaB mediates MPP+‐induced apoptotic cell death in neuroblastoma cells SH‐EP1 through JNK and c‐Jun/AP‐1. Neurochem Int. 2010; 56 ( 1 ): 128 – 134.
dc.identifier.citedreferenceHideshima T, Richardson P, Chauhan D, et al. The proteasome inhibitor PS‐341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 2001; 61 ( 7 ): 3071 – 3076.
dc.identifier.citedreferenceArmstrong MB, Schumacher KR, Mody R, et al. Bortezomib as a therapeutic candidate for neuroblastoma. J Exp Ther Oncol. 2008; 7 ( 2 ): 135 – 145.
dc.identifier.citedreferenceBlaney SM, Bernstein M, Neville K, et al. Phase I study of the proteasome inhibitor bortezomib in pediatric patients with refractory solid tumors: a Children’s Oncology Group study (ADVL0015). J Clin Oncol. 2004; 22 ( 23 ): 4804 – 4809.
dc.identifier.citedreferenceZhao L, Lee J, Mody R, et al. The superiority of the time‐to‐event continual reassessment method to the rolling six design in pediatric oncology Phase I trials. Clin Trials. 2011; 8 ( 4 ): 361 – 369.
dc.identifier.citedreferenceDoussau A, Asselain B, Le Deley MC, et al. Dose‐finding designs in pediatric phase I clinical trials: comparison by simulations in a realistic timeline framework. Contemp Clin Trials. 2012; 33 ( 4 ): 657 – 665.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.