Show simple item record

Comparative RNA‐Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease

dc.contributor.authorHinder, Lucy M.
dc.contributor.authorPark, Meeyoung
dc.contributor.authorRumora, Amy E.
dc.contributor.authorHur, Junguk
dc.contributor.authorEichinger, Felix
dc.contributor.authorPennathur, Subramaniam
dc.contributor.authorKretzler, Matthias
dc.contributor.authorBrosius, Frank C.
dc.contributor.authorFeldman, Eva L.
dc.date.accessioned2017-10-05T18:16:19Z
dc.date.available2018-12-03T15:34:02Zen
dc.date.issued2017-09
dc.identifier.citationHinder, Lucy M.; Park, Meeyoung; Rumora, Amy E.; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C.; Feldman, Eva L. (2017). "Comparative RNA‐Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease." Journal of Cellular and Molecular Medicine 21(9): 2140-2152.
dc.identifier.issn1582-1838
dc.identifier.issn1582-4934
dc.identifier.urihttps://hdl.handle.net/2027.42/138206
dc.description.abstractTreating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue‐specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self‐organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self‐organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue‐specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a ‘one size fits all’ approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another.
dc.publisherUS Department of Health and Human Services
dc.publisherWiley Periodicals, Inc.
dc.subject.othertype 2 diabetes
dc.subject.otherdiabetic nephropathy
dc.subject.otherpioglitazone
dc.subject.otherdiabetic peripheral neuropathy
dc.titleComparative RNA‐Seq transcriptome analyses reveal distinct metabolic pathways in diabetic nerve and kidney disease
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138206/1/jcmm13136.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138206/2/jcmm13136_am.pdf
dc.identifier.doi10.1111/jcmm.13136
dc.identifier.sourceJournal of Cellular and Molecular Medicine
dc.identifier.citedreferenceBethunaickan R, Berthier CC, Zhang W, et al. Identification of stage‐specific genes associated with lupus nephritis and response to remission induction in (NZB× NZW) F1 and NZM2410 mice. Arthritis Rheumatol. 2014; 66: 2246 – 58.
dc.identifier.citedreferenceTörönen P, Kolehmainen M, Wong G, et al. Analysis of gene expression data using self‐organizing maps. FEBS Lett. 1999; 451: 142 – 6.
dc.identifier.citedreferenceNikkilä J, Törönen P, Kaski S, et al. Analysis and visualization of gene expression data using self‐organizing maps. Neural Netw. 2002; 15: 953 – 66.
dc.identifier.citedreferenceByron SA, Van Keuren‐Jensen KR, Engelthaler DM, et al. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. Nat Rev Genet. 2016; 17: 257 – 71.
dc.identifier.citedreferenceRapaport F, Khanin R, Liang Y, et al. Comprehensive evaluation of differential gene expression analysis methods for RNA‐seq data. Genome Biol. 2013; 14: R95.
dc.identifier.citedreferenceSoneson C, Delorenzi M. A comparison of methods for differential expression analysis of RNA‐seq data. BMC Bioinform. 2013; 14: 91.
dc.identifier.citedreferenceBiessels GJ, van der Heide LP, Kamal A, et al. Ageing and diabetes: implications for brain function. Eur J Pharmacol. 2002; 441: 1 – 14.
dc.identifier.citedreferenceLaboratory B. Determination of podocyte number and density in rodent glomeruli. Animal Models of Diabetic Complications Consortium.
dc.identifier.citedreferenceSullivan KA, Hayes JM, Wiggin TD, et al. Mouse models of diabetic neuropathy. Neurobiol Dis. 2007; 28: 276 – 85.
dc.identifier.citedreferenceOh SS, Hayes JM, Sims‐Robinson C, et al. The effects of anesthesia on measures of nerve conduction velocity in male C57Bl6/J mice. Neurosci Lett. 2010; 483: 127 – 31.
dc.identifier.citedreferenceZhang H, Saha J, Byun J, et al. Rosiglitazone reduces renal and plasma markers of oxidative injury and reverses urinary metabolite abnormalities in the amelioration of diabetic nephropathy. Am J Physiol Renal Physiol. 2008; 295: F1071 – 81.
dc.identifier.citedreferenceSanden SK, Wiggins JE, Goyal M, et al. Evaluation of a thick and thin section method for estimation of podocyte number, glomerular volume, and glomerular volume per podocyte in rat kidney with Wilms’ tumor‐1 protein used as a podocyte nuclear marker. J Am Soc Nephrol. 2003; 14: 2484 – 93.
dc.identifier.citedreferenceTrapnell C, Roberts A, Goff L, et al. Differential gene and transcript expression analysis of RNA‐seq experiments with TopHat and Cufflinks. Nat Protoc. 2012; 7: 562 – 78.
dc.identifier.citedreferenceHuang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008; 4: 44 – 57.
dc.identifier.citedreferenceO’Brien PD, Hur J, Hayes JM, et al. BTBR ob/ob mice as a novel diabetic neuropathy model: neurological characterization and gene expression analyses. Neurobiol Dis. 2014; 73C: 348 – 55.
dc.identifier.citedreferenceSas KM, Kayampilly P, Byun J, et al. Tissue‐specific metabolic reprogramming drives nutrient flux in diabetic complications. JCI Insight. 2016; 1: e86976.
dc.identifier.citedreferenceHinder LM, Vivekanandan‐Giri A, McLean LL, et al. Decreased glycolytic and tricarboxylic acid cycle intermediates coincide with peripheral nervous system oxidative stress in a murine model of type 2 diabetes. J Endocrinol. 2013; 216: 1 – 11.
dc.identifier.citedreferenceHinder LM, Figueroa‐Romero C, Pacut C, et al. Long‐chain acyl coenzyme A synthetase 1 overexpression in primary cultured Schwann cells prevents long chain fatty acid‐induced oxidative stress and mitochondrial dysfunction. Antioxid Redox Signal. 2014; 21: 588 – 600.
dc.identifier.citedreferenceVincent AM, Calabek B, Roberts L, et al. Biology of diabetic neuropathy. Handb Clin Neurol. 2013; 115: 591 – 606.
dc.identifier.citedreferenceRussell JW, Sullivan KA, Windebank AJ, et al. Neurons undergo apoptosis in animal and cell culture models of diabetes. Neurobiol Dis. 1999; 6: 347 – 63.
dc.identifier.citedreferenceFesting MF, Altman DG. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002; 43: 244 – 58.
dc.identifier.citedreferenceLappin DW, Hensey C, McMahon R, et al. Gremlins, glomeruli and diabetic nephropathy. Curr Opin Nephrol Hypertens. 2000; 9: 469 – 72.
dc.identifier.citedreferenceDolan V, Murphy M, Sadlier D, et al. Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am J Kidney Dis. 2005; 45: 1034 – 9.
dc.identifier.citedreferenceKahvecioglu S, Guclu M, Ustundag Y, et al. Evaluation of serum spondin 2 levels in the different stages of type 2 diabetic nephropathy. Nephrology. 2015; 20: 721 – 26.
dc.identifier.citedreferenceSalisbury EA, Lazard ZW, Ubogu EE, et al. Transient brown adipocyte‐like cells derive from peripheral nerve progenitors in response to bone morphogenetic protein 2. Stem Cells Transl Med. 2012; 1: 874 – 85.
dc.identifier.citedreferenceNiu H, Li Y, Li H, et al. Matrix metalloproteinase 12 modulates high‐fat‐diet induced glomerular fibrogenesis and inflammation in a mouse model of obesity. Sci Rep. 2016; 6: 20171.
dc.identifier.citedreferenceBrownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005; 54: 1615 – 25.
dc.identifier.citedreferenceInternational Diabetes Foundation Diabetes atlas, 6th ed. 2014.
dc.identifier.citedreferenceDeshpande AD, Harris‐Hayes M, Schootman M. Epidemiology of diabetes and diabetes‐related complications. Phys Ther. 2008; 88: 1254 – 64.
dc.identifier.citedreferenceCenters for Disease Control and Prevention. National Diabetes Statistics Report: Estimates of Diabetes and Its Burden in the United States. Atlanta, GA: US Department of Health and Human Services; 2014.
dc.identifier.citedreferenceEdwards JL, Vincent AM, Cheng HT, et al. Diabetic neuropathy: mechanisms to management. Pharmacol Ther. 2008; 120: 1 – 34.
dc.identifier.citedreferenceKim B, McLean LL, Philip SS, et al. Hyperinsulinemia induces insulin resistance in dorsal root ganglion neurons. Endocrinology. 2011; 152: 3638 – 47.
dc.identifier.citedreferenceCallaghan BC, Price RS, Feldman EL. Distal symmetric polyneuropathy: a review. JAMA. 2015; 314: 2172 – 81.
dc.identifier.citedreferenceSaran R, Li Y, Robinson B, et al. US Renal Data System 2014 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis. 2015; 65: A7.
dc.identifier.citedreferenceAfkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013; 24: 302 – 8. ASN. 2012070718.
dc.identifier.citedreferenceGoldberg RB, Kendall DM, Deeg MA, et al. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2005; 28: 1547 – 54.
dc.identifier.citedreferenceBetteridge DJ. Effects of pioglitazone on lipid and lipoprotein metabolism. Diabetes Obes Metab. 2007; 9: 640 – 7.
dc.identifier.citedreferenceNakamura T, Ushiyama C, Osada S, et al. Pioglitazone reduces urinary podocyte excretion in type 2 diabetes patients with microalbuminuria. Metabolism. 2001; 50: 1193 – 6.
dc.identifier.citedreferenceSchneider CA, Ferrannini E, DeFronzo R, et al. Effect of pioglitazone on cardiovascular outcome in diabetes and chronic kidney disease. J Am Soc Nephrol. 2008; 19: 182 – 7.
dc.identifier.citedreferenceNakamura T, Ushiyama C, Shimada N, et al. Comparative effects of pioglitazone, glibenclamide, and voglibose on urinary endothelin‐1 and albumin excretion in diabetes patients. J Diabetes Complicat. 2000; 14: 250 – 4.
dc.identifier.citedreferenceZafiriou S, Stanners SR, Saad S, et al. Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol. 2005; 16: 638 – 45.
dc.identifier.citedreferenceJiang Y, Thakran S, Bheemreddy R, et al. Pioglitazone normalizes insulin signaling in the diabetic rat retina through reduction in tumor necrosis factor α and suppressor of cytokine signaling 3. J Biol Chem. 2014; 289: 26395 – 405.
dc.identifier.citedreferenceKo GJ, Kang YS, Han SY, et al. Pioglitazone attenuates diabetic nephropathy through an anti‐inflammatory mechanism in type 2 diabetic rats. Nephrol Dial Transplant. 2008; 23: 2750 – 60.
dc.identifier.citedreferenceJia H, Zhu S, Ji Q, et al. Repeated administration of pioglitazone attenuates development of hyperalgesia in a rat model of neuropathic pain. Exp Clin Psychopharmacol. 2010; 18: 359 – 65.
dc.identifier.citedreferencePark S‐W, Yi J‐H, Miranpuri G, et al. Thiazolidinedione class of peroxisome proliferator‐activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther. 2007; 320: 1002 – 12.
dc.identifier.citedreferenceAhmadian M, Suh JM, Hah N, et al. PPARgamma signaling and metabolism: the good, the bad and the future. Nat Med. 2013; 19: 557 – 66.
dc.identifier.citedreferenceHur J, Dauch JR, Hinder LM, et al. The metabolic syndrome and microvascular complications in a murine model of type 2 diabetes. Diabetes. 2015; 64: 3294 – 304.
dc.identifier.citedreferenceTamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self‐organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci. 1999; 96: 2907 – 12.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.