Show simple item record

Transport of the alpha subunit of the voltage gated Lâ type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles

dc.contributor.authorLinsley, Jeremy W.
dc.contributor.authorHsu, I‐uen
dc.contributor.authorWang, Wenjia
dc.contributor.authorKuwada, John Y.
dc.date.accessioned2017-10-05T18:16:42Z
dc.date.available2018-12-03T15:34:02Zen
dc.date.issued2017-09
dc.identifier.citationLinsley, Jeremy W.; Hsu, I‐uen ; Wang, Wenjia; Kuwada, John Y. (2017). "Transport of the alpha subunit of the voltage gated Lâ type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles." Traffic 18(9): 622-632.
dc.identifier.issn1398-9219
dc.identifier.issn1600-0854
dc.identifier.urihttps://hdl.handle.net/2027.42/138228
dc.publisherJohn Wiley & Sons A/S
dc.subject.otherStac3
dc.subject.othertrafficking
dc.subject.otherzebrafish
dc.subject.otherskeletal muscle
dc.subject.otherEC coupling
dc.subject.otherDHPR
dc.subject.othercalcium channel
dc.titleTransport of the alpha subunit of the voltage gated Lâ type calcium channel through the sarcoplasmic reticulum occurs prior to localization to triads and requires the beta subunit but not Stac3 in skeletal muscles
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138228/1/tra12502-sup-0001-EditorialProcess.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138228/2/tra12502.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138228/3/tra12502_am.pdf
dc.identifier.doi10.1111/tra.12502
dc.identifier.sourceTraffic
dc.identifier.citedreferenceRahkila P, Luukela V, Vaananen K, Metsikko K. Differential targeting of vesicular stomatitis virus G protein and influenza virus hemagglutinin appears during myogenesis of L6 muscle cells. J Cell Biol. 1998; 140 ( 5 ): 1101 â 1111.
dc.identifier.citedreferenceTaylor JR, Zheng Z, Wang ZM, Payne AM, Messi ML, Delbono O. Increased CaVbeta1A expression with aging contributes to skeletal muscle weakness. Aging Cell. 2009; 8 ( 5 ): 584 â 594.
dc.identifier.citedreferenceMcFarland TP, Milstein ML, Cala SE. Rough endoplasmic reticulum to junctional sarcoplasmic reticulum trafficking of calsequestrin in adult cardiomyocytes. J Mol Cell Cardiol. 2010; 49 ( 4 ): 556 â 564.
dc.identifier.citedreferenceKaisto T, Metsikko K. Distribution of the endoplasmic reticulum and its relationship with the sarcoplasmic reticulum in skeletal myofibers. Exp Cell Res. 2003; 289 ( 1 ): 47 â 57.
dc.identifier.citedreferenceRalston E, Lu Z, Ploug T. The organization of the Golgi complex and microtubules in skeletal muscle is fiber typeâ dependent. J Neurosci. 1999; 19 ( 24 ): 10694 â 10705.
dc.identifier.citedreferencePercival JM, Froehner SC. Golgi complex organization in skeletal muscle: a role for Golgiâ mediated glycosylation in muscular dystrophies? Traffic. 2007; 8 ( 3 ): 184 â 194.
dc.identifier.citedreferencePercival JM, Gregorevic P, Odom GL, Banks GB, Chamberlain JS, Froehner SC. rAAV6â microdystrophin rescues aberrant Golgi complex organization in mdx skeletal muscles. Traffic. 2007; 8 ( 10 ): 1424 â 1439.
dc.identifier.citedreferenceRogalski AA, Bergmann JE, Singer SJ. Effect of microtubule assembly status on the intracellular processing and surface expression of an integral protein of the plasma membrane. J Cell Biol. 1984; 99 ( 3 ): 1101 â 1109.
dc.identifier.citedreferenceLippincottâ Schwartz J, Donaldson JG, Schweizer A, et al. Microtubuleâ dependent retrograde transport of proteins into the ER in the presence of brefeldin A suggests an ER recycling pathway. Cell. 1990; 60 ( 5 ): 821 â 836.
dc.identifier.citedreferenceBuraei Z, Yang J. The ss subunit of voltageâ gated Ca2+ channels. Physiol Rev. 2010; 90 ( 4 ): 1461 â 1506.
dc.identifier.citedreferenceRahkila P, Alakangas A, Vaananen K, Metsikko K. Transport pathway, maturation, and targetting of the vesicular stomatitis virus glycoprotein in skeletal muscle fibers. J Cell Sci. 1996; 109 (pt 6): 1585 â 1596.
dc.identifier.citedreferenceGrabner M, Dirksen RT, Beam KG. Tagging with green fluorescent protein reveals a distinct subcellular distribution of Lâ type and nonâ Lâ type Ca2+ channels expressed in dysgenic myotubes. Proc Natl Acad Sci U S A. 1998; 95 ( 4 ): 1903 â 1908.
dc.identifier.citedreferenceCusimano V, Pampinella F, Giacomello E, Sorrentino V. Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells. Proc Natl Acad Sci U S A. 2009; 106 ( 12 ): 4695 â 4700.
dc.identifier.citedreferenceVolpe P, Villa A, Podini P, et al. The endoplasmic reticulumâ sarcoplasmic reticulum connection: distribution of endoplasmic reticulum markers in the sarcoplasmic reticulum of skeletal muscle fibers. Proc Natl Acad Sci U S A. 1992; 89 ( 13 ): 6142 â 6146.
dc.identifier.citedreferenceNissinen M, Kaisto T, Salmela P, Peltonen J, Metsikko K. Restricted distribution of mRNAs encoding a sarcoplasmic reticulum or transverse tubule protein in skeletal myofibers. J Histochem Cytochem. 2005; 53 ( 2 ): 217 â 227.
dc.identifier.citedreferenceFranziniâ Armstrong C, Pinconâ Raymond M, Rieger F. Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings. Dev Biol. 1991; 146 ( 2 ): 364 â 376.
dc.identifier.citedreferenceTakekura H, Sun X, Franziniâ Armstrong C. Development of the excitationâ contraction coupling apparatus in skeletal muscle: peripheral and internal calcium release units are formed sequentially. J Muscle Res Cell Motil. 1994; 15 ( 2 ): 102 â 118.
dc.identifier.citedreferenceBlechinger SR, Evans TG, Tang PT, Kuwada JY, Warren JT Jr, Krone PH. The heatâ inducible zebrafish hsp70 gene is expressed during normal lens development under nonâ stress conditions. Mech Dev. 2002; 112 ( 1â 2 ): 213 â 215.
dc.identifier.citedreferenceHirata H, Saintâ Amant L, Waterbury J, et al. accordion, a zebrafish behavioral mutant, has a muscle relaxation defect due to a mutation in the ATPase Ca2+ pump SERCA1. Development. 2004; 131 ( 21 ): 5457 â 5468.
dc.identifier.citedreferenceKugler G, Grabner M, Platzer J, Striessnig J, Flucher BE. The monoclonal antibody mAB 1A binds to the excitationâ contraction coupling domain in the IIâ III loop of the skeletal muscle calcium channel alpha(1S) subunit. Arch Biochem Biophys. 2004; 427 ( 1 ): 91 â 100.
dc.identifier.citedreferenceLippincottâ Schwartz J, Snapp E, Kenworthy A. Studying protein dynamics in living cells. Nat Rev Mol Cell Biol. 2001; 2 ( 6 ): 444 â 456.
dc.identifier.citedreferenceSwaminathan R, Hoang CP, Verkman AS. Photobleaching recovery and anisotropy decay of green fluorescent protein GFPâ S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J. 1997; 72 ( 4 ): 1900 â 1907.
dc.identifier.citedreferenceHalloran MC, Satoâ Maeda M, Warren JT, et al. Laserâ induced gene expression in specific cells of transgenic zebrafish. Development. 2000; 127: 953 â 1960.
dc.identifier.citedreferenceBlock BA, Imagawa T, Campbell KP, Franziniâ Armstrong C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol. 1988; 107 (6, pt 2): 2587 â 2600.
dc.identifier.citedreferencePaolini C, Fessenden JD, Pessah IN, Franziniâ Armstrong C. Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci U S A. 2004; 101 ( 34 ): 12748 â 12752.
dc.identifier.citedreferenceSchneider MF, Chandler WK. Voltage dependent charge movement of skeletal muscle: a possible step in excitationâ contraction coupling. Nature. 1973; 242 ( 5395 ): 244 â 246.
dc.identifier.citedreferenceRios E, Brum G. Involvement of dihydropyridine receptors in excitationâ contraction coupling in skeletal muscle. Nature. 1987; 325 ( 6106 ): 717 â 720.
dc.identifier.citedreferenceBannister RA. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitationâ contraction coupling. J Exp Biol. 2016; 219 (pt 2): 175 â 182.
dc.identifier.citedreferenceSchredelseker J, Shrivastav M, Dayal A, Grabner M. Nonâ Ca2+â conducting Ca2+ channels in fish skeletal muscle excitationâ contraction coupling. Proc Natl Acad Sci U S A. 2010; 107 ( 12 ): 5658 â 5663.
dc.identifier.citedreferenceFlucher BE, Weiss RG, Grabner M. Cooperation of twoâ domain Ca(2+) channel fragments in triad targeting and restoration of excitationâ contraction coupling in skeletal muscle. Proc Natl Acad Sci U S A. 2002; 99 ( 15 ): 10167 â 10172.
dc.identifier.citedreferenceSchredelseker J, Dayal A, Schwerte T, Franziniâ Armstrong C, Grabner M. Proper restoration of excitationâ contraction coupling in the dihydropyridine receptor beta1â null zebrafish relaxed is an exclusive function of the beta1a subunit. J Biol Chem. 2009; 284 ( 2 ): 1242 â 1251.
dc.identifier.citedreferenceSchredelseker J, Di Biase V, Obermair GJ, et al. The beta 1a subunit is essential for the assembly of dihydropyridineâ receptor arrays in skeletal muscle. Proc Natl Acad Sci U S A. 2005; 102 ( 47 ): 17219 â 17224.
dc.identifier.citedreferenceTakekura H, Paolini C, Franziniâ Armstrong C, Kugler G, Grabner M, Flucher BE. Differential contribution of skeletal and cardiac IIâ III loop sequences to the assembly of dihydropyridineâ receptor arrays in skeletal muscle. Mol Biol Cell. 2004; 15 ( 12 ): 5408 â 5419.
dc.identifier.citedreferenceLinsley JW, Hsu IU, Groom L, et al. Congenital myopathy results from misregulation of a muscle Ca2+ channel by mutant Stac3. Proc Natl Acad Sci U S A. 2017;114(2): E228â e236.
dc.identifier.citedreferenceZhou W, Saintâ Amant L, Hirata H, Cui WW, Sprague SM, Kuwada JY. Nonâ sense mutations in the dihydropyridine receptor beta1 gene, CACNB1, paralyze zebrafish relaxed mutants. Cell Calcium. 2006; 39 ( 3 ): 227 â 236.
dc.identifier.citedreferenceHorstick EJ, Linsley JW, Dowling JJ, et al. Stac3 is a component of the excitationâ contraction coupling machinery and mutated in Native American myopathy. Nat Commun. 2013; 4: 1952.
dc.identifier.citedreferenceCampiglio M, Flucher BE. STAC3 stably interacts through its C1 domain with CaV1.1 in skeletal muscle triads. Sci Rep. 2017; 7: 41003.
dc.identifier.citedreferencePolster A, Perni S, Bichraoui H, Beam KG. Stac adaptor proteins regulate trafficking and function of muscle and neuronal Lâ type Ca2+ channels. Proc Natl Acad Sci U S A. 2015; 112 ( 2 ): 602 â 606.
dc.identifier.citedreferenceDelbono O, O’Rourke KS, Ettinger WH. Excitationâ calcium release uncoupling in aged single human skeletal muscle fibers. J Membr Biol. 1995; 148 ( 3 ): 211 â 222.
dc.identifier.citedreferenceRenganathan M, Messi ML, Delbono O. Dihydropyridine receptorâ ryanodine receptor uncoupling in aged skeletal muscle. J Membr Biol. 1997; 157 ( 3 ): 247 â 253.
dc.identifier.citedreferenceWang ZM, Messi ML, Delbono O. Lâ Type Ca(2+) channel charge movement and intracellular Ca(2+) in skeletal muscle fibers from aging mice. Biophys J. 2000; 78 ( 4 ): 1947 â 1954.
dc.identifier.citedreferenceJimenezâ Moreno R, Wang ZM, Gerring RC, Delbono O. Sarcoplasmic reticulum Ca2+ release declines in muscle fibers from aging mice. Biophys J. 2008; 94 ( 8 ): 3178 â 3188.
dc.identifier.citedreferenceBoncompagni S, d’Amelio L, Fulle S, Fano G, Protasi F. Progressive disorganization of the excitationâ contraction coupling apparatus in aging human skeletal muscle as revealed by electron microscopy: a possible role in the decline of muscle performance. J Gerontol A Biol Sci Med Sci. 2006; 61 ( 10 ): 995 â 1008.
dc.identifier.citedreferenceO’Connell K, Gannon J, Doran P, Ohlendieck K. Reduced expression of sarcalumenin and related Ca2+â regulatory proteins in aged rat skeletal muscle. Exp Gerontol. 2008; 43 ( 10 ): 958 â 961.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.