Show simple item record

Processing YAG/뱉 Al2O3 composites via reactive sintering Y2O3/Al2O3 NP mixtures. A superior alternative to bottom up processing using atomically mixed YAlOx NPs

dc.contributor.authorLaine, Richard M.
dc.contributor.authorTaylor, Nathan J.
dc.contributor.authorStangeland‐molo, Sandra
dc.date.accessioned2017-10-05T18:16:47Z
dc.date.available2019-01-07T18:34:35Zen
dc.date.issued2017-10
dc.identifier.citationLaine, Richard M.; Taylor, Nathan J.; Stangeland‐molo, Sandra (2017). "Processing YAG/αâ Al2O3 composites via reactive sintering Y2O3/Al2O3 NP mixtures. A superior alternative to bottom up processing using atomically mixed YAlOx NPs." Journal of the American Ceramic Society 100(10): 4500-4510.
dc.identifier.issn0002-7820
dc.identifier.issn1551-2916
dc.identifier.urihttps://hdl.handle.net/2027.42/138233
dc.description.abstractThis effort contrasts â bottomâ upâ processing of YAG/αâ Al2O3 composites where both elements (as 40â 50 nm APSs nanopowders) are present at close to atomic mixing with reactive sintering where ballâ milled mixtures of the individual nanopowders (40â 50 nm APSs) give uniform elemental mixing at length scales closer to 100â 800 nm with correspondingly much longer diffusion distances. In contrast to expectations, densification with control of final grain sizes is best effected using reactive sintering. Thus, reactive sintering to densities â ¥95% occurs at only 1500°C with final grain sizes of â 1000 nm for all samples. In contrast â bottom upâ processing to â ¥95% densities is only achieved at 1600°C, and with final grain sizes of 1700 nm. The reason for this unexpected behavior is that YAG phase forms early in the bottom up approach greatly inhibiting diffusion promoted densification. In contrast, in reactive sintering, YAG is prevented from forming because of the longer diffusion distances such that densification occurs prior to full conversion of the Y2O3 component to YAG. The found hardness values are statistically superior to literature values for composites near the known eutectic composition. In an accompanying paper, the addition of a third component reverses this behavior.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherreaction sintering
dc.subject.otheryttrium aluminum garnet
dc.subject.otherprocessing
dc.subject.othernanoparticles
dc.subject.othercombustion synthesis
dc.titleProcessing YAG/뱉 Al2O3 composites via reactive sintering Y2O3/Al2O3 NP mixtures. A superior alternative to bottom up processing using atomically mixed YAlOx NPs
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138233/1/jace14980_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138233/2/jace14980.pdf
dc.identifier.doi10.1111/jace.14980
dc.identifier.sourceJournal of the American Ceramic Society
dc.identifier.citedreferenceGlushkova VB, Krzhizhanovskaya VA, Egorova ON, Udalov YuP, Kachalova LP. Interaction of yttrium and aluminumâ oxides. Inorg Mater. 1983; 19: 80 â 84.
dc.identifier.citedreferenceKakihana M. Invited review â solâ gelâ preparation of high temperature superconducting oxides. J Solâ Gel Sci Technol. 1996; 6: 7 â 55.
dc.identifier.citedreferencePratsinis SE. Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci. 1998; 24: 197 â 219.
dc.identifier.citedreferenceSutorik AC, Laine RM, Marchal JC, Johns T, Hinklin T. Mixedâ metal oxide particles by liquid feedâ flame spray pyrolysis of oxide precursors in oxygenated solvents. US Patent 7220398 issued May 22, 2007.
dc.identifier.citedreferenceParthasarathy TA, Mah Tâ II, Matson LE. Processing, structure and properties of aluminaâ YAG eutectic composites. J Ceram Proc Res, 2004; 5: 80 â 390.
dc.identifier.citedreferenceHirano K. Application of eutectic composites to gas turbine system and fundamental fracture properties up to 1700. J Eur Ceram Soc. 2005; 25: 1191 â 1199.
dc.identifier.citedreferenceWaku Y, Nakagawa N, Wakamoto T, Ohtsubo H, Shimizu K, Kohtoku Y. A ductile ceramic eutectic composite with high strength at 1873 K. Nature. 1997; 389: 49 â 52.
dc.identifier.citedreferenceLlorca J, Orera VM. Directionally solidified eutectic ceramic oxides. Prog Mater Sci, 2006; 51: 711 â 809.
dc.identifier.citedreferenceSchehl M, DÄ±Ì az LA, Torrecillas R. Alumina nanocomposites from powderâ alkoxide mixtures. Acta Mater. 2002; 50: 1125 â 1139.
dc.identifier.citedreferenceSommer F, Kern F, Elâ Maghraby HF, et al. Effect of preparation route on the properties of slipâ casted Al 2 O 3 /YAG composites. Ceram Int. 2012; 38: 4819 â 4826.
dc.identifier.citedreferenceWaku Y, Nakagawa N, Ohtsubo H, Mitani A, Shimizu K. Fracture and deformation behaviour of melt growth composites at very high temperatures. J Mater Sci. 2001; 36: 1585 â 1594.
dc.identifier.citedreferencePalmero P, Simone A, Esnouf C, Fantozzi G, Montanaro L. Comparison among different sintering routes for preparing aluminaâ YAG nanocomposites. J Eur Ceram Soc. 2006; 26: 941 â 947.
dc.identifier.citedreferenceWilding MC, Benmore CJ, McMillan PF. A neutron diffraction study of yttriumâ and lanthanumâ aluminate glasses. J Nonâ Cryst Solids. 2002; 297: 143 â 155.
dc.identifier.citedreferenceSim Sâ M, Keller KA, Mah Tâ I. Phase formation in yttrium aluminum garnet powders synthesized by chemical methods. J Mater Sci. 2000; 35: 713 â 717.
dc.identifier.citedreferenceHay RS. Phase transformations and microstructure evolution in solâ gel derived yttriumâ aluminum garnet films. J Mater Res. 1993; 8: 578 â 604.
dc.identifier.citedreferenceLarrea A, Orera VM, Merino RI, Peña JI. Microstructure and mechanical properties of Al 2 O 3 â YSZ and Al 2 O 3 â YAG directionally solidified eutectic plates. J Eur Ceram Soc. 2005; 25: 1419 â 1429.
dc.identifier.citedreferenceTeng X, Liu H, Huang C. Effect of Al 2 O 3 particle size on the mechanical properties of aluminaâ based ceramics. Mater Sci Eng: A. 2007; 452â 453: 545 â 551.
dc.identifier.citedreferenceOhji T, Jeong Yâ K, Choa Yâ H, Niihara K. Strengthening and toughening mechanisms of ceramic nanocomposites. J Am Ceram Soc. 1998; 81: 1453 â 60. and references therein.
dc.identifier.citedreferenceLi WQ, Gao L. Processing, microstructure and mechanical properties of 25 vol% YAGâ Al 2 O 3 nanocomposites. Nanostructured Mater. 1999; 11: 1073 â 1080.
dc.identifier.citedreferenceKrell A. Comment: the effect of grain size on the mechanical and optical properties of spark plasma sinteringâ processed magnesium aluminate spinel MgAl 2 O 4 (Rothaman et al.). Int J Appl Ceram Technol. 2015; 12: E174 â E175.
dc.identifier.citedreferenceYi E, Wang W, Kieffer J, Laine RM. Key parameters governing the densification of cubicâ Li 7 La 3 Zr 2 O 12 Li + conductors. J Power Sources. 2017; 352: 156 â 164.
dc.identifier.citedreferenceTaylor NJ, Stangelandâ Molo S, Laine RM. Comparing bottom up processing with reactive sintering. Processing routes to dense Al 2 O 3 â YAGâ YSZ composites from single and threeâ phase nanoparticles (NPs). Bottom up processing wins this time. J Am Ceram Soc 2017. https://doi.org/10.1111/jace.14761
dc.identifier.citedreferenceBrinker CJ, Scherer G. Solâ Gel Science. N.Y., N.Y.: Academic Press; 1991.
dc.identifier.citedreferenceLaine RM, Sellinger A. Siâ Containing Ceramic Precursors. In: Rappoport Z, Apeloig Y, eds. The Chemistry of Organic Silicon Compounds. Vol 2. London: J. Wiley & Sons Ltd.; 1998: 2245 â 310.
dc.identifier.citedreferenceTaylor NJ, Laine RM. Bottom up processing is not always optimal. YAG tubes. Adv Func Mater. 2014; 24: 1125 â 1132.
dc.identifier.citedreferenceTaylor NJ, Pottebaum AJ, Uz V, Laine RM. The bottom up approach is not always the best processing method. Dense αâ Al 2 O 3 /NiAl 2 O 4 composites. Adv Func Mater. 2014; 24: 3392 â 3398.
dc.identifier.citedreferenceYi E, Wang W, Mohanty S, Kieffer J, Tamaki R, Laine RM. Materials that can replace liquid electrolytes in Li batteries: superionic conductivities in Li 1.7 Al 0.3 Ti 1.7 Si 0.4 P 2.6 O 12. Processing combustion synthesized nanopowders to free standing thin films. J Power Sources. 2014; 269: 577 â 588.
dc.identifier.citedreferenceHinklin T, Toury B, Gervais C, et al. Liquidâ feed flame spray pyrolysis of metalloorganic and inorganic alumina sources in the production of nanoalumina powders. Chem Mater. 2004; 16: 21 â 30.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.