Show simple item record

Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems

dc.contributor.authorFisher, Kaleigh
dc.contributor.authorGonthier, David J.
dc.contributor.authorEnnis, Katherine K.
dc.contributor.authorPerfecto, Ivette
dc.date.accessioned2017-10-05T18:16:59Z
dc.date.available2018-12-03T15:34:02Zen
dc.date.issued2017-09
dc.identifier.citationFisher, Kaleigh; Gonthier, David J.; Ennis, Katherine K.; Perfecto, Ivette (2017). "Floral resource availability from groundcover promotes bee abundance in coffee agroecosystems." Ecological Applications 27(6): 1815-1826.
dc.identifier.issn1051-0761
dc.identifier.issn1939-5582
dc.identifier.urihttps://hdl.handle.net/2027.42/138244
dc.description.abstractPatterns of bee abundance and diversity across different spatial scales have received thorough research consideration. However, the impact of short‐ and long‐term temporal resource availability on biodiversity has been less explored. This is highly relevant in tropical agricultural systems for pollinators, as many foraging periods of pollinators extend beyond flowering of any single crop species. In this study, we sought to understand how bee communities in tropical agroecosystems changed between seasons, and if short‐ and long‐term floral resource availability influenced their diversity and abundance. We used a threshold analysis approach in order to explore this relationship at two time scales. This study took place in a region dominated by coffee agroecosystems in Southern Mexico. This was an ideal system because the landscape offers a range of coffee management regimes that maintain heterogeneity in floral resource availability spatially and temporally. We found that the bee community varies significantly between seasons. There were higher abundances of native social, solitary and managed honey bees during the dry season when coffee flowers. Additionally, we found that floral resources from groundcover, but not trees, were associated with bee abundance. Further, the temporal scale of the availability of these resources is important, whereby short‐term floral resource availability appears particularly important in maintaining high bee abundance at sites with lower seasonal complementarity. We argue that in addition to spatial resource heterogeneity, temporal resource heterogeneity is critical in explaining bee community patterns, and should thus be considered to promote pollinator conservation.
dc.publisherSecretariat of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services
dc.publisherWiley Periodicals, Inc.
dc.subject.otherconservation
dc.subject.otherseasonal complementarity
dc.subject.othertemporal resource availability
dc.subject.othercoffee
dc.subject.otherbiodiversity
dc.subject.otherbee community
dc.subject.otheragroecosystem
dc.titleFloral resource availability from groundcover promotes bee abundance in coffee agroecosystems
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138244/1/eap1568-sup-0001-AppendixS1.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138244/2/eap1568_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138244/3/eap1568.pdf
dc.identifier.doi10.1002/eap.1568
dc.identifier.sourceEcological Applications
dc.identifier.citedreferencePeters, V. E., C. R. Carroll, R. J. Cooper, R. Greenberg, and M.   Solis. 2013. The contribution of plant species with a steady‐state flowering phenology to native bee conservation and bee pollination services. Insect Conservation and Diversity 6: 45 – 56.
dc.identifier.citedreferenceMorellato, L. P. C., et al. 2016. Linking plant phenology to conservation biology. Biological Conservation 195: 60 – 72.
dc.identifier.citedreferenceNagamitsu, T., and T. Inoue. 1997. Aggressive foraging of social bees as a mechanism of floral resource partitioning in an Asian tropical rainforest. Oecologia 110: 432 – 439.
dc.identifier.citedreferenceNovelo, E. R., V. Melendez, and R. Ayala. 2007. Diversidad de abejas silvestres (Hymenoptera: Apoidea) en areas naturales protegidas de Yucatan, Mexico. Entomologia mexicana 6: 1 – 7.
dc.identifier.citedreferenceOlesen, J. M., J. Bascompte, H. Elberling, and P. Jordano. 2008. Temporal dynamics in a pollinator network. Ecology 86: 1573 – 1582.
dc.identifier.citedreferencePerfecto, I., R. A. Rice, R. Greenberg, and M. E. Van Der Voort. 1996. Shade coffee: a disappea refuge for biodiversity. BioScience 46: 598 – 608.
dc.identifier.citedreferencePerfecto, I., J. Vandermeer, and S. M. Philpott. 2014. Complex ecological interactions in the coffee agroecosystem. Annual Review of Ecology, Evolution, and Systematics 45: 37 – 58.
dc.identifier.citedreferencePeters, V. E., T. A. Carlo, M. A. R. Mello, R. A. Rice, D. W. Tallamy, S. A. Caudill, and T. H. Fleiming. 2016. Using plant‐animal interactions to inform tree selection tree‐based agroecosystems for enhanced biodiversity. BioScience 66: 1046 – 1056.
dc.identifier.citedreferencePhilpott, S. M., S. Uno, and J. Maldonado. 2006. The importance of ants and high‐shade management to coffee pollination and fruit weight in Chiapas, Mexico. Biodiversity and Conservation 15: 487 – 501.
dc.identifier.citedreferencePhilpott, S. M., W. J. Arendt, I. Armbrecht, P. Bichier, T. V. Diestch, C. Gordon, … J. M. Zolotoff. 2008. Biodiversity loss in Latin American coffee landscapes: review of the evidence on ants, birds, and trees. Conservation Biology 22: 1093 – 1105.
dc.identifier.citedreferencePotts, S. G., V. Imperatriz‐Fonseca, H. T. Ngo, M. A. Aizen, J. C. Biesmeijer, T. D. Breeze, and A. J. Vanbergen. 2016. Safeguarding pollinators and their values to human well‐being. Nature 540: 220 – 229.
dc.identifier.citedreferenceR Core Team. 2015. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
dc.identifier.citedreferenceRicketts, T. H. 2004. Tropical forest fragments enhance pollinator activity in nearby coffee crops. Conservation Biology 18: 1262 – 1271.
dc.identifier.citedreferenceRollin, O., V. Bretagnolle, L. Fortel, L. Guilbaud, and M.   Henry. 2015. Habitat, spatial and temporal drivers of diversity patterns in a wild bee assemblage. Biodiversity and Conservation 24: 1195 – 1214.
dc.identifier.citedreferenceRoubik, D. W. 1978. Competitive Interactions between neotropical pollinators and Africanized honey bees. Science 201: 1010 – 1032.
dc.identifier.citedreferenceRoubik, D. W. 1989. Ecology and natural history of tropical bees. Cambridge University Press, Cambridge, United Kingdom.
dc.identifier.citedreferenceRoubik, D. W., and H. Wolda. 2001. Do competing honey bees matter? Dynamics and abundance of native bees before and after honey bee invasion. Population Ecology 43: 53 – 62.
dc.identifier.citedreferenceRoubik, D. W., J. E. Moreno, C. Vergara, and D. Wittman. 1986. Sporadic food competition with African honey bee: projected impact on neotropical social bees. Journal of Tropical Ecology 2: 97 – 111.
dc.identifier.citedreferenceSamnegård, U., P. A. Hambäck, C. Eardley, S. Nemomissa, and K. Hylander. 2015. Turnover in bee species composition and functional trait distributions between seasons in a tropical agricultural landscape. Agriculture, Ecosystems and Environment 211: 185 – 194.
dc.identifier.citedreferenceTscharntke, T., A. M. Klein, A. Kruess, I. Steffan‐Dewenter, and C. Thies. 2005. Landscape perspectives on agricultural intensification and biodiversity‐ecosystem service management. Ecology Letteres 8: 857 – 874.
dc.identifier.citedreferenceTylianakis, J. M., T. A. Rand, A. Kahmen, A. M. Klein, N.   Buchmann, J. Perner, and T. Tscharntke. 2008. Resource heterogeneity moderates the biodiversity‐function relationship in real world ecosystems. PLoS Biology 6: 0947 – 0956.
dc.identifier.citedreferenceVeddeler, D., A. M. Klein, and T. Tscharntke. 2006. Contrasting responses of bee communities to coffee flowering at different spatial scales. Oikos 112: 594 – 601.
dc.identifier.citedreferenceWilliams, N. M., E. E. Crone, T. H. Roulston, R. L. Minckley, L. Packer, and S. G. Potts. 2010. Ecological and life‐history traits predict bee species responses to environmental disturbances. Biological Conservation 143: 2280 – 2291.
dc.identifier.citedreferenceWillmer, P. G., and G. N. Stone. 1989. Incidence of entomophilous pollination of lowland coffee (Coffea canephora); the role of leaf cutter bees in Papua New Guinea. Entomologia Experimentalis et Applicata 50: 113 – 124.
dc.identifier.citedreferenceWinfree, R., I. Bartomeus, and D. P. Cariveau. 2011. Native pollinators in anthropogenic habitats. Annual Review of Ecology, Evolution, and Systematics 42: 1 – 22.
dc.identifier.citedreferenceAleixo, K. P. A., C. M. Enezes, V. Lúcia, I. M. F. Onseca, C.   Inês, and S. Ilva. 2016. Seasonal availability of floral resources and ambient temperature shape stingless bee foraging behavior ( Scaptotrigona aff. depilis ). Apidologie. https://doi.org/10.1007/s13592-016-0456-4
dc.identifier.citedreferenceAranda, R., and G. Graciolli. 2015. Spatial–temporal distribution of the Hymenoptera in the Brazilian Savanna and the effects of habitat heterogeneity on these patterns. Journal of Insect Conservation 19: 1173 – 1187.
dc.identifier.citedreferenceBaker, H. G. 1963. Evolutionary mechanisms in pollination biology: origins and functions of floral systems are being elucidated by genetical and ecological studies. Science 139: 877 – 883.
dc.identifier.citedreferenceBasu, P., A. K. Parui, S. Chatterjee, A. Dutta, P. Chakraborty, S. Roberts, and B. Smith. 2016. Scale dependent drivers of wild bee diversity in tropical heterogeneous agricultural landscapes. Ecology and Evolution 6: 6983 – 6992.
dc.identifier.citedreferenceBluthgen, N., and A. M. Klein. 2011. Functional complementarity and specialisation: the role of biodiversity in plant‐pollinator interactions. Basic and Applied Ecology 12: 282 – 291.
dc.identifier.citedreferenceBolker, B. M., M. E. Brooks, C. J. Clark, S. W. Geange, J. R. Poulsen, M. H. H. Stevens, and J. S. White. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology and Evolution 24: 127 – 135.
dc.identifier.citedreferenceBrosi, B. J., and H. M. Briggs. 2013. Single pollinator species losses reduce floral fidelity and plant reproductive function. Proceedings of the National Academy of Sciences USA 110: 13044 – 13048.
dc.identifier.citedreferenceBuckley, L. B., and R. B. Huey. 2016. How Extreme Temperatures Impact Organisms and the Evolution of their Thermal Tolerance. Integrative and Comparative Biology 56: 98 – 109.
dc.identifier.citedreferenceByrnes, J. E. K., L. Gamfeldt, F. Isbell, J. S. Lefcheck, J. N. Griffin, A. Hector, … J. Emmett Duffy. 2014. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods in Ecology and Evolution 5: 111 – 124.
dc.identifier.citedreferenceCairns, C. E., R. Villanueva‐Gutiérrez, S. Koptur, and D. B. Bray. 2005. Bee populations, forest disturbance, and Africanization in Mexico. Biotropica 37: 686 – 692.
dc.identifier.citedreferenceDicks, L. V., et al. 2016. Ten policies for pollinators. Science 354: 975 – 976.
dc.identifier.citedreferenceFAO. 2015. Food and Agriculture Organization of the United Nations Global Forest Resources Assessment, Rome, Italy.
dc.identifier.citedreferenceFerreira, P. A., D. Boscolo, L. G. Carvalheiro, J. C. Biesmeijer, P. L. B. Rocha, and B. F. Viana. 2015. Responses of bees to habitat loss in fragmented landscapes of Brazilian Atlantic Rainforest. Landscape Ecology 30: 2067 – 2078.
dc.identifier.citedreferenceFoley, J. A. 2005. Global Consequences of Land Use. Science 309: 570 – 574.
dc.identifier.citedreferenceGeslin, B., et al. 2016. Spatiotemporal changes in flying insect abundance and their functional diversity as a function of distance to natural habitats in a mass flowering crop. Agriculture, Ecosystems & Environment 229: 21 – 29.
dc.identifier.citedreferenceGonthier, D. J., K. K. Ennis, S. Farinas, H. Hsieh, A. L. Iverson, P. Batáry, and I. Perfecto. 2014. Biodiversity conservation in agriculture requires a multi‐scale approach Biodiversity conservation in agriculture requires a multi‐scale approach. Proceedings of the Royal Society B 281: 20141358.
dc.identifier.citedreferenceHammer, O., D. A. T. Harper, and P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
dc.identifier.citedreferenceHolzschuh, A., I. Steffan‐Dewenter, and T. Tscharntke. 2007. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117: 354 – 361.
dc.identifier.citedreferenceIPBES. 2016. Summary for policymakers of the assessment report of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services on pollinators, pollination and food production. S.G. Potts et al. Secretariat of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, Bonn, Germany.
dc.identifier.citedreferenceJha, S., and J. H. Vandermeer. 2009. Contrasting foraging patterns for Africanized honeybees, native bees and native wasps in a tropical agroforestry landscape. Journal of Tropical Ecology 25: 13.
dc.identifier.citedreferenceJha, S., and J. H. Vandermeer. 2010. Impacts of coffee agroforestry management on tropical bee communities. Biological Conservation 143: 1423 – 1431.
dc.identifier.citedreferenceJohnson, L. K., and S. P. Hubbell. 1974. Aggression and competition among stingless bees: field studies. Ecology 55: 120 – 127.
dc.identifier.citedreferenceJimenez‐Soto, E., and S. M. Philpott. 2015. Size matters: nest colonization patterns for twig‐nesting ants. Ecology and Evolution 5: 3288 – 3298.
dc.identifier.citedreferenceKaluza, B. F., H. Wallace, T. A. Heard, A. Klein, and S. D. Leonhardt. 2016. Urban gardens promote bee foraging over natural habitats and plantations. Ecology and Evolution 6: 1304 – 1316.
dc.identifier.citedreferenceKennedy, C. M., E. Lonsdorf, M. C. Neel, N. M. Williams, T. H. Ricketts, R. Winfree, and C. Kremen. 2013. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecology Letters 16: 584 – 599.
dc.identifier.citedreferenceKlein, A.M., I. Steffan‐Dewenter, D. Buchori and T. Tscharntke. 2002. Effects of land‐ use intensity in tropical agroforestry systems on coffee flower‐visiting and trap‐nesting bees and wasps. Conservation Biology 16: 1003 – 1014.
dc.identifier.citedreferenceKlein, A.‐M., I. Steffan‐Dewenter, and T. Tscharntke. 2003a. Bee pollination and fruit set of Coffea Arabica and C. canephora (Rubiaceae). American Journal of Botany 90: 153 – 157.
dc.identifier.citedreferenceKlein, A., I. Steffan‐Dewenter, and T. Tscharntke. 2003b. Pollination of Coffea canephora in relation to local and regional agroforestry management. Journal of Applied Ecology 40: 837 – 845.
dc.identifier.citedreferenceKovacs‐Hostyanszki, A., S. Haenke, P. Batary, B. Jauker, A.   Baldi, T. Tscharntke, and A. Holzschuh. 2013. Contrasting effects of mass‐flowering crops on bee pollination of hedge plants at different spatial and temporal scales. Ecological Applications 23: 1938 – 1946.
dc.identifier.citedreferenceKremen, C., N. M. Williams, M. A. Aizen, B. Gemmill‐Herren, G. LeBuhn, R. Minckley, … T. H. Ricketts. 2007. Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land‐use change. Ecology Letters 10: 299 – 314.
dc.identifier.citedreferenceLeBuhn, G., et al. 2003. A standardized method for monitoring Bee Populations – The Bee Inventory (BI) Plot. Logan, UT. http://online.sfsu.edu/beeplot/
dc.identifier.citedreferenceLefcheck, J. S., J. E. K. Byrnes, F. Isbell, L. Gamfeldt, J. N. Griffin, N. Eisenhauer, … J. E. Duffy. 2015. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications 6: 6936.
dc.identifier.citedreferenceLeong, M., L. C. Ponisio, C. Kremen, R. W. Thorp, and G. K. Roderick. 2016a. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes. Global Change Biology 22: 1046 – 1053.
dc.identifier.citedreferenceMandelik, Y., R. Winfree, T. Neeson, and C. Kremen. 2012. Complementary habitat use by wild bees in agro‐natural landscapes. Ecological Applications 22: 1535 – 1546.
dc.identifier.citedreferenceMichener, C. D. 1969. Comparative social behavior of bees. Annual Review of Entomology 14: 1 – 45.
dc.identifier.citedreferenceMichener, C. D., R. J. McGinley, and B. N. Danforth. 1994. The bee genera of North and Central America (Hymenoptera: Apoidea). Smithonian Institution Scholarly Press, Washington, DC
dc.identifier.citedreferenceMoguel, P., and V. M. Toledo. 1999. Biodiversity conservation in traditional coffee systems of Mexico. Conservation Biology 13: 11 – 21.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.