Show simple item record

Semidiurnal internal tide incoherence in the equatorial Pacific

dc.contributor.authorBuijsman, Maarten C.
dc.contributor.authorArbic, Brian K.
dc.contributor.authorRichman, James G.
dc.contributor.authorShriver, Jay F.
dc.contributor.authorWallcraft, Alan J.
dc.contributor.authorZamudio, Luis
dc.date.accessioned2017-10-05T18:17:10Z
dc.date.available2018-09-13T15:12:06Zen
dc.date.issued2017-07
dc.identifier.citationBuijsman, Maarten C.; Arbic, Brian K.; Richman, James G.; Shriver, Jay F.; Wallcraft, Alan J.; Zamudio, Luis (2017). "Semidiurnal internal tide incoherence in the equatorial Pacific." Journal of Geophysical Research: Oceans 122(7): 5286-5305.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/138253
dc.description.abstractThe jets in the equatorial Pacific Ocean of a realistically forced global circulation model with a horizontal resolution of 1/12.5° cause a strong loss of phase coherence in semidiurnal internal tides that propagate equatorward from the French Polynesian Islands and Hawaii. This loss of coherence is quantified with a baroclinic energy analysis, in which the semidiurnal‐band terms are separated into coherent, incoherent, and cross terms. For time scales longer than a year, the coherent energy flux approaches zero values at the equator, while the total flux is ∼500 W/m. The time variability of the incoherent energy flux is compared with the internal‐tide travel‐time variability, which is based on along‐beam integrated phase speeds computed with the Taylor‐Goldstein equation. The variability of monthly mean Taylor‐Goldstein phase speeds agrees well with the phase speed variability inferred from steric sea surface height phases extracted with a plane‐wave fit technique. On monthly time scales, the loss of phase coherence in the equatorward beams from the French Polynesian Islands is attributed to the time variability in the vertically sheared background flow associated with the jets and tropical instability waves. On an annual time scale, the effect of stratification variability is of equal or greater importance than the shear variability is to the loss of coherence. In the model simulations, low‐frequency equatorial jets do not noticeably enhance the dissipation of the internal tide, but merely decohere and scatter it.Key PointsThe equatorial jets in the Pacific Ocean decohere equatorward propagating semidiurnal internal tidesThe time‐variable vertical shear flow and stratification cause incoherence on different time scalesThe equatorial jets do not cause increased internal tide dissipation in a 1/12.5° global ocean model
dc.publisherAcademic Press, San Diego, Calif
dc.publisherWiley Periodicals, Inc.
dc.subject.othertides
dc.subject.otherinternal tide
dc.subject.othernonstationarity
dc.subject.otherequatorial jets
dc.subject.othernumerical modeling
dc.titleSemidiurnal internal tide incoherence in the equatorial Pacific
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138253/1/jgrc22340-sup-0001-2016JC012590-s01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138253/2/jgrc22340.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138253/3/jgrc22340_am.pdf
dc.identifier.doi10.1002/2016JC012590
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceRay, R. D., and E. D. Zaron ( 2016 ), M 2 internal tides and their observed wavenumber spectra from satellite altimetry, J. Phys. Oceanogr., 46, 3 – 22.
dc.identifier.citedreferenceRainville, L., T. M. S. Johnston, G. S. Carter, M. A. Merrifield, R. Pinkel, P. F. Worcester, and B. D. Dushaw ( 2010 ), Interference pattern and propagation of the M 2 internal tide south of the Hawaiian Ridge, J. Phys. Oceanogr., 40, 311 – 325.
dc.identifier.citedreferenceRay, R. D. ( 1998 ), Ocean self‐attraction and loading in numerical tidal models, Mar. Geod., 21, 181 – 192.
dc.identifier.citedreferenceRay, R. D., and G. T. Mitchum ( 1997 ), Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges, Prog. Oceanogr., 40, 135 – 162.
dc.identifier.citedreferenceRay, R. D., and E. D. Zaron ( 2011 ), Non‐stationary internal tides observed with satellite altimetry, Geophys. Res. Lett., 38, L17609, doi: 10.1029/2011GL048617.
dc.identifier.citedreferenceRosmond, T. E., J. Teixeira, M. Peng, T. F. Hogan, and R. Pauley ( 2002 ), Navy operational global atmospheric prediction system (NOGAPS): Forcing for ocean models, Oceanography, 15, 99 – 108.
dc.identifier.citedreferenceSavage, A. C., et al. ( 2017 ), Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies, J. Geophys. Res. Oceans, 122, 2519 – 2538, doi: 10.1002/2016JC012331.
dc.identifier.citedreferenceShriver, J. F., B. K. Arbic, J. G. Richman, R. D. Ray, E. J. Metzger, A. J. Wallcraft, and P. G. Timko ( 2012 ), An evaluation of the barotropic and internal tides in a high resolution global ocean circulation model, J. Geophys. Res., 117, C10024, doi: 10.1029/2012JC008170.
dc.identifier.citedreferenceShriver, J. F., J. G. Richman, and B. K. Arbic ( 2014 ), How stationary are the internal tides in a high‐resolution global ocean circulation model?, J. Geophys. Res. Oceans, 119, 2769 – 2787, doi: 10.1002/2013JC009423.
dc.identifier.citedreferenceSimmons, H. L., R. W. Hallberg, and B. K. Arbic ( 2004a ), Internal wave generation in a global baroclinic tide model, Deep Sea Res., Part II, 51, 3043 – 3068.
dc.identifier.citedreferenceSimmons, H. L., S. R. Jayne, L. C. St. Laurent, and A. J. Weaver ( 2004b ), Tidally driven mixing in a numerical model of the ocean general circulation, Ocean Modell., 6, 245 – 263.
dc.identifier.citedreferenceSmyth, W. D., J. Moum, and J. Nash ( 2011 ), Narrowband, high‐frequency oscillations at the equator: Part II: Properties of shear instabilities, J. Phys. Oceanogr., 41, 412 – 428.
dc.identifier.citedreferenceSmyth, W. D., J. N. Moum, L. Li, and S. A. Thorpe ( 2013 ), Diurnal shear instability, the descent of the surface shear layer, and the deep cycle of equatorial turbulence, J. Phys. Oceanogr., 43, 2432 – 2455.
dc.identifier.citedreferenceSt. Laurent, L., and J. Nash ( 2004 ), An examination of the radiative and dissipative properties of deep ocean internal tides, Deep Sea Res., Part II, 51, 3029 – 3042.
dc.identifier.citedreferenceStephenson, G. R., J. E. Hopkins, J. A. M. Green, M. E. Inall, and M. R. Palmer ( 2015 ), Baroclinic energy flux at the continental shelf edge modified by wind‐mixing, Geophys. Res. Lett., 42, 1826 – 1833, doi: 10.1002/2014GL062627.
dc.identifier.citedreferencevan Haren, H. ( 2004 ), Incoherent internal tidal currents in the deep‐ocean, Ocean Dyn., 54, 66 – 76.
dc.identifier.citedreferenceWard, M. L., and W. K. Dewar ( 2010 ), Scattering of gravity waves by potential vorticity in a shallow‐water fluid, J. Fluid Mech., 663, 478 – 506.
dc.identifier.citedreferenceWhalen, C. B., L. D. Talley, and J. A. MacKinnon ( 2012 ), Spatial and temporal variability of global ocean mixing inferred from Argo profiles, Geophys. Res. Lett., 39, L18612, doi: 10.1029/2012GL053196.
dc.identifier.citedreferenceWunsch, C. ( 1975 ), Internal tides in the ocean, Rev. Geophys., 13, 167 – 182.
dc.identifier.citedreferenceZaron, E. D. ( 2015 ), Nonstationary internal tides observed using dual‐satellite altimetry, J. Phys. Oceanogr., 45, 2239 – 2246, doi: 10.1175/JPO-D-15-0020.1.
dc.identifier.citedreferenceZaron, E. D. ( 2017 ), Mapping the nonstationary internal tide with satellite altimetry, J. Geophys. Res. Oceans, 122, 539 – 554, doi: 10.1002/2016JC012487.
dc.identifier.citedreferenceZaron, E. D., and G. D. Egbert ( 2014 ), Time‐variable refraction of the internal tide at the Hawaiian Ridge, J. Phys. Oceanogr., 44, 538 – 557.
dc.identifier.citedreferenceZhao, Z. ( 2016 ), Using CryoSat‐2 altimeter data to evaluate M 2 internal tides observed from multisatellite altimetry, Oceanography, 121, 5164 – 5180.
dc.identifier.citedreferenceZhao, Z., and M. H. Alford ( 2009 ), New altimetric estimates of mode‐1 M 2 internal tides in the central North Pacific Ocean, J. Phys. Oceanogr., 39, 1669 – 1684.
dc.identifier.citedreferenceZhao, Z., M. Alford, J. Girton, L. Rainville, and H. Simmons ( 2016 ), Global observations of open‐ocean mode‐1 M 2 internal tides, J. Phys. Oceanogr., 46, 1657 – 1684.
dc.identifier.citedreferenceZilberman, N. V., M. A. Merrifield, G. S. Carter, D. S. Luther, M. D. Levine, and T. J. Boyd ( 2011 ), Incoherent nature of M 2 internal tide at the Hawaiian Ridge, J. Phys. Oceanogr., 41, 2021 – 2036.
dc.identifier.citedreferenceAlford, M. H. ( 2003 ), Redistribution of energy available for ocean mixing by long‐range propagation of internal waves, Nature, 423, 159 – 162.
dc.identifier.citedreferenceAnsong, J. K., B. K. Arbic, M. C. Buijsman, J. G. Richman, J. F. Shriver, and A. J. Wallcraft ( 2015 ), Indirect evidence for substantial damping of low‐mode internal tides in the open ocean, J. Geophys. Res. Oceans, 120, 6057 – 6071, doi: 10.1002/2015JC010998.
dc.identifier.citedreferenceAnsong, J. K., et al. ( 2017 ), Semidiurnal internal tide energy fluxes and their variability in a Global Ocean Model and moored observations, J. Geophys. Res. Oceans, 122, 1882 – 1900, doi: 10.1002/2016JC012184.
dc.identifier.citedreferenceArbic, B. K., S. T. Garner, R. W. Hallberg, and H. L. Simmons ( 2004 ), The accuracy of surface elevations in forward global barotropic and baroclinic tide models, Deep Sea Res., Part II, 51, 3069 – 3101.
dc.identifier.citedreferenceArbic, B. K., A. Wallcraft, and E. Metzger ( 2010 ), Concurrent simulation of the eddying general circulation and tides in a global ocean model, Ocean Modell., 32, 175 – 187.
dc.identifier.citedreferenceArbic, B. K., J. Richman, J. Shriver, P. Timko, E. J. Metzger, and A. J. Wallcraft ( 2012 ), Global modeling of internal tides within an eddying ocean general circulation model, Oceanography, 25, 20 – 29.
dc.identifier.citedreferenceBecker, J. J., et al. ( 2009 ), Global bathymetry and elevation data at 30 arc seconds resolution: Srtm30_plus, Mar. Geod., 32, 355 – 371, doi: 10.1080/01490410903297766.
dc.identifier.citedreferenceBuijsman, M. C., J. M. Klymak, S. Legg, M. H. Alford, D. Farmer, J. A. MacKinnon, J. D. Nash, J.‐H. Park, A. Pickering, and H. Simmons ( 2014 ), Three dimensional double ridge internal tide resonance in Luzon Strait, J. Phys. Oceanogr., 44, 850 – 869.
dc.identifier.citedreferenceBuijsman, M. C., B. K. Arbic, J. A. M. Green, R. W. Helber, J. G. Richman, J. F. Shriver, P. G. Timko, and A. J. Wallcraft ( 2015 ), Optimizing internal wave drag in a forward barotropic model with semidiurnal tides, Ocean Modell., 85, 42 – 55.
dc.identifier.citedreferenceBuijsman, M. C., J. K. Ansong, B. K. Arbic, J. G. Richman, J. F. Shriver, P. G. Timko, A. J. Wallcraft, C. Whalen, and Z. Zhao ( 2016 ), Impact of internal wave drag on the semidiurnal energy balance in a global ocean circulation model, J. Phys. Oceanogr., 46, 1399 – 1419.
dc.identifier.citedreferenceCarrére, L., C. Le Provost, and F. Lyard ( 2004 ), On the statistical stability of the M 2 barotropic and baroclinic tidal characteristics from along‐track TOPEX/Poseidon satellite altimetry analysis, J. Geophys. Res., 109, C03033, doi: 10.1029/2003JC001873.
dc.identifier.citedreferenceChavanne, C., P. Flament, D. Luther, and K.‐W. Gurgel ( 2014 ), The surface expression of semidiurnal internal tides near a strong source at Hawaii. Part II: Interactions with mesoscale currents, J. Phys. Oceanogr., 40, 1180 – 1200.
dc.identifier.citedreferenceColosi, J. A., and W. Munk ( 2006 ), Tales of the venerable Honolulu tide gauge, J. Phys. Oceanogr., 36, 967 – 996.
dc.identifier.citedreferenceda Silva, J., M. Buijsman, and J. Magalhaes ( 2015 ), Internal waves on the upstream side of a large sill of the Mascarene Ridge: A comprehensive view of their generation mechanisms and evolution, Deep Sea Res., Part I, 99, 87 – 104.
dc.identifier.citedreferenceDunphy, M., and K. G. Lamb ( 2014 ), Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction, J. Geophys. Res. Oceans, 119, 523 – 536, doi: 10.1002/2013JC009293.
dc.identifier.citedreferenceDushaw, B. D., B. M. Howe, B. D. Cornuelle, P. F. Worcester, and D. S. Luther ( 1995 ), Barotropic and baroclinic tides in the central north Pacific Ocean determined from long‐range reciprocal acoustic transmissions, J. Phys. Oceanogr., 25, 631 – 647.
dc.identifier.citedreferenceEgbert, G. D., A. Bennett, and M. Foreman ( 1994 ), Topex/poseidon tides estimated using a global inverse model, J. Geophys. Res., 99, 821 – 852.
dc.identifier.citedreferenceFiring, E., S. E. Wijffels, and P. Hacker ( 1998 ), Equatorial subthermocline currents across the Pacific, J. Geophys. Res., 103, 21,413 – 21,423.
dc.identifier.citedreferenceFu, L.‐L., and C. Ubelmann ( 2014 ), On the transition from profile altimeter to swath altimeter for observing global ocean surface topography, J. Atmos. Oceanic Technol., 31, 560 – 568.
dc.identifier.citedreferenceGarner, S. T. ( 2005 ), A topographic drag closure built on an analytical base flux, J. Atmos. Sci., 62, 2302 – 2315.
dc.identifier.citedreferenceGill, A. ( 1982 ), Atmosphere‐Ocean Dynamics, International Geophysics, Academic Press, San Diego, Calif.
dc.identifier.citedreferenceHendershott, M. C. ( 1972 ), The effects of solid earth deformation on global ocean tides, Geophys. J. R. Astron. Soc., 29, 389 – 402.
dc.identifier.citedreferenceHogan, T. F., et al. ( 2014 ), The Navy Global Environmental Model, Oceanography, 27, 116 – 125.
dc.identifier.citedreferenceHolmes, R. M., J. N. Moum, and L. N. Thomas ( 2016 ), Evidence for seafloor‐intensified mixing by surface‐generated equatorial waves, Geophys. Res. Lett., 43, 1202 – 1210, doi: 10.1002/2015GL066472.
dc.identifier.citedreferenceIvanov, V., L. Ivanov, and A. Lisichenok ( 1990 ), Redistribution of energy of the internal tidal wave in the North Equatorial Countercurrent region, Sov. J. Phys. Oceanogr., 1, 383 – 386.
dc.identifier.citedreferenceJayne, S. R. ( 2009 ), The impact of abyssal mixing parameterizations in an ocean general circulation model, J. Phys. Oceanogr., 39, 1756 – 1775.
dc.identifier.citedreferenceJayne, S. R., and L. C. St. Laurent ( 2001 ), Parameterizing tidal dissipation over rough topography, Geophys. Res. Lett., 28, 811 – 814.
dc.identifier.citedreferenceKantha, L. H., and C. C. Tierney ( 1997 ), Global baroclinic tides, Prog. Oceanogr., 40, 163 – 178.
dc.identifier.citedreferenceKelly, S. M., and P. F. J. Lermusiaux ( 2016 ), Internal‐tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front, J. Geophys. Res. Oceans, 121, 6271 – 6294, doi: 10.1002/2016JC011639.
dc.identifier.citedreferenceKelly, S. M., N. L. Jones, G. N. Ivey, and R. J. Lowe ( 2015 ), Internal‐tide spectroscopy and prediction in the Timor Sea, J. Phys. Oceanogr., 45, 64 – 83.
dc.identifier.citedreferenceKelly, S. M., P. F. J. Lermusiaux, T. F. Duda, and P. J. Haley Jr. ( 2016 ), A Coupled‐mode Shallow Water model for tidal analysis: Internal‐tide reflection and refraction by the Gulf Stream, J. Phys. Oceanogr., 46, 3661 – 3679, doi: 10.1175/JPO-D-16-0018.1.
dc.identifier.citedreferenceKerry, C., B. Powell, and G. Carter ( 2014 ), The impact of subtidal circulation on internal‐tide generation and propagation in the Philippine Sea, J. Phys. Oceanogr., 44, 1386 – 1405.
dc.identifier.citedreferenceKerry, C., B. Powell, and G. Carter ( 2016 ), Quantifying the incoherent M 2 internal tide in the Philippine Sea, J. Phys. Oceanogr., 46, 2483 – 2491.
dc.identifier.citedreferenceKunze, E. ( 1985 ), Near‐inertial wave propagation in geostrophic shear, J. Phys. Oceanogr., 15, 544 – 565.
dc.identifier.citedreferenceMacKinnon, J. A., M. H. Alford, O. Sun, R. Pinkel, Z. Zhao, and J. Klymak ( 2013 ), Parametric subharmonic instability of the internal tide at 29N, J. Phys. Oceanogr., 43, 17 – 28.
dc.identifier.citedreferenceMacKinnon, J. A et al. ( 2017 ), Climate process team on internal‐wave driven ocean mixing, Bull. Am. Meteorol. Soc., doi: 10.1175/BAMS-D-16-0030.1, in press.
dc.identifier.citedreferenceMagalhaes, J. M., J. C. B. da Silva, M. C. Buijsman, and C. A. E. Garcia ( 2016 ), Effect of the North equatorial counter current on the generation and propagation of internal solitary waves off the Amazon shelf (SAR observations), Ocean Sci. Discuss., 12, 243 – 255.
dc.identifier.citedreferenceMartini, K. I., M. H. Alford, J. Nash, E. Kunze, and M. A. Merrifield ( 2007 ), Diagnosing a partly standing internal wave in Mamala Bay, Oahu, Geophys. Res. Lett., 34, L17604, doi: 10.1029/2007GL029749.
dc.identifier.citedreferenceMathur, M., G. S. Carter, and T. Peacock ( 2014 ), Topographic scattering of the low‐mode internal tide in the deep ocean, J. Geophys. Res. Oceans, 119, 2165 – 2182, doi: 10.1002/2013JC009152.
dc.identifier.citedreferenceMelet, A., R. Hallberg, S. Legg, and K. Polzin ( 2013 ), Sensitivity of the ocean state to the vertical distribution of internal‐tide‐driven mixing, J. Phys. Oceanogr., 43, 602 – 615.
dc.identifier.citedreferenceMiles, J. ( 1961 ), On the stability of heterogeneous shear flows, J. Fluid Mech., 10, 496 – 508.
dc.identifier.citedreferenceMoum, J. N., A. Perlin, J. D. Nash, and M. J. McPhaden ( 2013 ), Seasonal sea surface cooling in the equatorial Pacific cold tongue controlled by ocean mixing, Nature, 500, 64 – 67.
dc.identifier.citedreferenceMuench, J. E., and E. Kunze ( 2000 ), Internal wave interactions with equatorial deep jets. Part II: Acceleration of the jets, J. Phys. Oceanogr., 30, 2099 – 2110.
dc.identifier.citedreferenceMüller, M., J. Cherniawsky, M. Foreman, and J.‐S. von Storch ( 2012 ), Global map of M 2 internal tide and its seasonal variability from high resolution ocean circulation and tide modelling, Geophys. Res. Lett., 39, L19607, doi: 10.1029/2012GL053320.
dc.identifier.citedreferenceMüller, M., B. Arbic, J. Richman, J. Shriver, E. Kunze, R. B. Scott, A. Wallcraft, and L. Zamudio ( 2015 ), Toward an internal gravity wave spectrum in global ocean models, Geophys. Res. Lett., 42, 3474 – 3481, doi: 10.1002/2015GL063365.
dc.identifier.citedreferenceMüller, P., G. Holloway, F. Henyey, and N. Pomphrey ( 1986 ), Nonlinear interactions among internal gravity waves, Rev. Geophys., 24, 493 – 536.
dc.identifier.citedreferenceMunk, W., and C. Wunsch ( 1998 ), Abyssal recipes II: Energetics of tidal and wind mixing, Deep Sea Res., Part I, 45, 1977 – 2010.
dc.identifier.citedreferenceMunk, W. H., and D. E. Cartwright ( 1966 ), Tidal spectroscopy and prediction, Philos. Trans. R. Soc. London A, 259, 533 – 581.
dc.identifier.citedreferenceNash, J. D., E. Shroyer, S. Kelly, M. Inall, T. Duda, M. Levine, N. Jones, and R. Musgrave ( 2012a ), Are any coastal internal tides predictable?, Oceanography, 25, 80 – 95.
dc.identifier.citedreferenceNash, J. D., S. M. Kelly, E. L. Shroyer, J. N. Moum, and T. F. Duda ( 2012b ), The unpredictable nature of internal tides on continental shelves, J. Phys. Oceanogr., 42, 1981 – 2000.
dc.identifier.citedreferenceNgodock, H. E., I. Souopgui, A. J. Wallcraft, J. G. Richman, J. F. Shriver, and B. K. Arbic ( 2016 ), On improving the accuracy of the barotropic tides embedded in a high‐resolution global ocean circulation model, Ocean Modell., 97, 16 – 26.
dc.identifier.citedreferencePark, J.‐H., and D. Farmer ( 2013 ), Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter, J. Geophys. Res. Oceans, 118, 7081 – 7094, doi: 10.1002/2013JC008983.
dc.identifier.citedreferencePark, J.‐H., and D. R. Watts ( 2006 ), Internal Tides in the Southwestern Japan/East Sea, J. Phys. Oceanogr., 36, 22 – 34.
dc.identifier.citedreferencePeters, H., M. C. Gregg, and J. M. Toole ( 1988 ), On the parameterization of equatorial turbulence, J. Geophys. Res., 93, 1199 – 1218.
dc.identifier.citedreferencePhilander, S. G. H., W. J. Hurlin, and R. C. Pacanowski ( 1986 ), Properties of long equatorial waves in models of the seasonal cycle in the tropical Atlantic and Pacific Oceans, J. Geophys. Res., 91, 207 – 214.
dc.identifier.citedreferencePickering, A., M. Alford, J. Nash, L. Rainville, M. Buijsman, D. Ko, and B. Lim ( 2015 ), Structure and variability of internal tides in Luzon Strait, J. Phys. Oceanogr., 45, 1574 – 1594.
dc.identifier.citedreferencePonte, A. L., and P. Klein ( 2015 ), Incoherent signature of internal tides on sea level in idealized numerical simulations, Geophys. Res. Lett., 42, 1520 – 1526, doi: 10.1002/2014GL062583.
dc.identifier.citedreferenceRainville, L., and R. Pinkel ( 2006 ), Propagation of low‐mode internal waves through the ocean, J. Phys. Oceanogr., 36, 1220 – 1236.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.