Show simple item record

High‐grade serous carcinomas arise in the mouse oviduct via defects linked to the human disease

dc.contributor.authorZhai, Yali
dc.contributor.authorWu, Rong
dc.contributor.authorKuick, Rork
dc.contributor.authorSessine, Michael S
dc.contributor.authorSchulman, Stephanie
dc.contributor.authorGreen, Megan
dc.contributor.authorFearon, Eric R
dc.contributor.authorCho, Kathleen R
dc.date.accessioned2017-10-05T18:17:25Z
dc.date.available2018-12-03T15:34:02Zen
dc.date.issued2017-09
dc.identifier.citationZhai, Yali; Wu, Rong; Kuick, Rork; Sessine, Michael S; Schulman, Stephanie; Green, Megan; Fearon, Eric R; Cho, Kathleen R (2017). "High‐grade serous carcinomas arise in the mouse oviduct via defects linked to the human disease." The Journal of Pathology 243(1): 16-25.
dc.identifier.issn0022-3417
dc.identifier.issn1096-9896
dc.identifier.urihttps://hdl.handle.net/2027.42/138263
dc.description.abstractRecent studies have suggested that the most common and lethal type of ‘ovarian’ cancer, i.e. high‐grade serous carcinoma (HGSC), usually arises from epithelium on the fallopian tube fimbriae, and not from the ovarian surface epithelium. We have developed Ovgp1‐iCreERT2 mice in which the Ovgp1 promoter controls expression of tamoxifen‐regulated Cre recombinase in oviductal epithelium – the murine equivalent of human fallopian tube epithelium (FTE). We employed Ovgp1‐iCreERT2 mice to show that FTE‐specific inactivation of several different combinations of tumour suppressor genes that are recurrently mutated in human HGSCs – namely Brca1, Trp53, Rb1, and Nf1 – results in serous tubal intraepithelial carcinomas (STICs) that progress to HGSC or carcinosarcoma, and to widespread metastatic disease in a subset of mice. The cancer phenotype is highly penetrant and more rapid in mice carrying engineered alleles of all four tumour suppressor genes. Brca1, Trp53 and Pten inactivation in the oviduct also results in STICs and HGSCs, and is associated with diffuse epithelial hyperplasia and mucinous metaplasia, which are not observed in mice with intact Pten. Oviductal tumours arise earlier in these mice than in those with Brca1, Trp53, Rb1 and Nf1 inactivation. Tumour initiation and/or progression in mice lacking conditional Pten alleles probably require the acquisition of additional defects, a notion supported by our identification of loss of the wild‐type Rb1 allele in the tumours of mice carrying only one floxed Rb1 allele. Collectively, the models closely recapitulate the heterogeneity and histological, genetic and biological features of human HGSC. These models should prove useful for studying the pathobiology and genetics of HGSC in vivo, and for testing new approaches for prevention, early detection, and treatment. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.otherovarian cancer
dc.subject.otherfallopian tube
dc.subject.otherserous carcinoma
dc.subject.othergenetically engineered mouse model
dc.titleHigh‐grade serous carcinomas arise in the mouse oviduct via defects linked to the human disease
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138263/1/path4927_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138263/2/path4927.pdf
dc.identifier.doi10.1002/path.4927
dc.identifier.sourceThe Journal of Pathology
dc.identifier.citedreferenceOrdonez NG. Value of PAX 8 immunostaining in tumor diagnosis: a review and update. Adv Anat Pathol 2012; 19: 140 – 151.
dc.identifier.citedreferenceKuhn E, Kurman RJ, Vang R, et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high‐grade serous carcinoma—evidence supporting the clonal relationship of the two lesions. J Pathol 2012; 226: 421 – 426.
dc.identifier.citedreferenceMcDaniel AS, Stall JN, Hovelson DH, et al. Next‐generation sequencing of tubal intraepithelial carcinomas. JAMA Oncol 2015; 1: 1128 – 1132.
dc.identifier.citedreferenceEckert MA, Pan S, Hernandez KM, et al. Genomics of ovarian cancer progression reveals diverse metastatic trajectories including intraepithelial metastasis to the fallopian tube. Cancer Discov 2016; 6: 1342 – 1351.
dc.identifier.citedreferenceCancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609 – 615.
dc.identifier.citedreferencePatch AM, Christie EL, Etemadmoghadam D, et al. Whole‐genome characterization of chemoresistant ovarian cancer. Nature 2015; 521: 489 – 494.
dc.identifier.citedreferenceKurman RJ, Carcangiu ML, Herrington CS, Young RH (eds). World Health Organization Classification of Tumours of Female Reproductive Organs (4th edn). International Agency for Research on Cancer: Lyon, 2014.
dc.identifier.citedreferenceBrustmann H. Ovarian carcinosarcoma associated with bilateral tubal intraepithelial carcinoma: a case report. Int J Gynecol Pathol 2013; 32: 384 – 389.
dc.identifier.citedreferenceArdighieri L, Mori L, Conzadori S, et al. Identical TP53 mutations in pelvic carcinosarcomas and associated serous tubal intraepithelial carcinomas provide evidence of their clonal relationship. Virchows Arch 2016; 469: 61 – 69.
dc.identifier.citedreferenceHowell VM. Genetically engineered mouse models for epithelial ovarian cancer: are we there yet? Semin Cell Dev Biol 2014; 27: 106 – 117.
dc.identifier.citedreferenceSzabova L, Yin C, Bupp S, et al. Perturbation of Rb, p53, and Brca1 or Brca2 cooperate in inducing metastatic serous epithelial ovarian cancer. Cancer Res 2012; 72: 4141 – 4153.
dc.identifier.citedreferenceConnolly DC, Bao R, Nikitin AY, et al. Female mice chimeric for expression of the simian virus 40 TAg under control of the MISIIR promoter develop epithelial ovarian cancer. Cancer Res 2003; 63: 1389 – 1397.
dc.identifier.citedreferenceFlesken‐Nikitin A, Choi KC, Eng JP, et al. Induction of carcinogenesis by concurrent inactivation of p53 and Rb1 in the mouse ovarian surface epithelium. Cancer Res 2003; 63: 3459 – 3463.
dc.identifier.citedreferenceFlesken‐Nikitin A, Hwang CI, Cheng CY, et al. Ovarian surface epithelium at the junction area contains a cancer‐prone stem cell niche. Nature 2013; 495: 241 – 245.
dc.identifier.citedreferenceKim J, Coffey DM, Creighton CJ, et al. High‐grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci U S A 2012; 109: 3921 – 3926.
dc.identifier.citedreferencePerets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high‐grade serous ovarian cancer in brca;tp53;pten models. Cancer Cell 2013; 24: 751 – 765.
dc.identifier.citedreferenceArango NA, Kobayashi A, Wang Y, et al. A mesenchymal perspective of Mullerian duct differentiation and regression in Amhr2‐lacZ mice. Mol Reprod Dev 2008; 75: 1154 – 1162.
dc.identifier.citedreferenceMiyoshi I, Takahashi K, Kon Y, et al. Mouse transgenic for murine oviduct‐specific glycoprotein promoter‐driven simian virus 40 large T‐antigen: tumor formation and its hormonal regulation. Mol Reprod Dev 2002; 63: 168 – 176.
dc.identifier.citedreferenceWu R, Zhai Y, Kuick R, et al. Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse. J Pathol 2016; 240: 341 – 351.
dc.identifier.citedreferenceOlive KP, Tuveson DA, Ruhe ZC, et al. Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 2004; 119: 847 – 860.
dc.identifier.citedreferenceAnisimov VN, Ukraintseva SV, Yashin AI. Cancer in rodents: does it tell us about cancer in humans? Nat Rev Cancer 2005; 5: 807 – 819.
dc.identifier.citedreferenceSon WC, Gopinath C. Early occurrence of spontaneous tumors in CD‐1 mice and Sprague–Dawley rats. Toxicol Pathol 2004; 32: 371 – 374.
dc.identifier.citedreferenceReuber MD, Vlahakis G, Heston WE. Spontaneous hyperplastic and neoplastic lesions of the uterus in mice. J Gerontol 1981; 36: 663 – 673.
dc.identifier.citedreferenceObata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res 1998; 58: 2095 – 2097.
dc.identifier.citedreferenceSopik V, Iqbal J, Rosen B, et al. Why have ovarian cancer mortality rates declined? Part I. Incidence. Gynecol Oncol 2015; 138: 741 – 749.
dc.identifier.citedreferenceBowtell DD, Bohm S, Ahmed AA, et al. Rethinking ovarian cancer II: reducing mortality from high‐grade serous ovarian cancer. Nat Rev Cancer 2015; 15: 668 – 679.
dc.identifier.citedreferencePiek JM, van Diest PJ, Zweemer RP, et al. Dysplastic changes in prophylactically removed Fallopian tubes of women predisposed to developing ovarian cancer. J Pathol 2001; 195: 451 – 456.
dc.identifier.citedreferenceKindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: evidence for a causal relationship. Am J Surg Pathol 2007; 31: 161 – 169.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.