Show simple item record

ATR‐101 inhibits cholesterol efflux and cortisol secretion by ATP‐binding cassette transporters, causing cytotoxic cholesterol accumulation in adrenocortical carcinoma cells

dc.contributor.authorBurns, Veronica Elizabeth
dc.contributor.authorKerppola, Tom Klaus
dc.date.accessioned2017-10-05T18:17:32Z
dc.date.available2019-01-07T18:34:36Zen
dc.date.issued2017-10
dc.identifier.citationBurns, Veronica Elizabeth; Kerppola, Tom Klaus (2017). "ATR‐101 inhibits cholesterol efflux and cortisol secretion by ATP‐binding cassette transporters, causing cytotoxic cholesterol accumulation in adrenocortical carcinoma cells." British Journal of Pharmacology 174(19): 3315-3332.
dc.identifier.issn0007-1188
dc.identifier.issn1476-5381
dc.identifier.urihttps://hdl.handle.net/2027.42/138270
dc.description.abstractBackground and PurposeTo further the development of new agents for the treatment of adrenocortical carcinoma (ACC), we characterized the molecular and cellular mechanisms of cytotoxicity by the adrenalytic compound ATR‐101 (PD132301‐02).Experimental ApproachWe compared the effects of ATR‐101, PD129337, and ABC transporter inhibitors on cholesterol accumulation and efflux, on cortisol secretion, on ATP levels, and on caspase activation in ACC‐derived cell lines. We examined the effects of these compounds in combination with methyl‐β‐cyclodextrin or exogenous cholesterol to determine the roles of altered cholesterol levels in the effects of these compounds.Key ResultsATR‐101 caused cholesterol accumulation, ATP depletion, and caspase activation within 30 minutes after addition to ACC‐derived cells, whereas PD129337 did not. Suppression of cholesterol accumulation by methyl‐β‐cyclodextrin or exogenous cholesterol, prevented ATP depletion and caspase activation by ATR‐101. ATR‐101 blocked cholesterol efflux and cortisol secretion, suggesting that it inhibited ABCA1, ABCG1, and MDR1 transporters. Combinations of ABCA1, ABCG1, and MDR1 inhibitors were also cytotoxic. Combinations of ATR‐101 with inhibitors of ABCG1, MDR1, or mitochondrial functions had increased cytotoxicity. Inhibitors of steroidogenesis reduced ATP depletion by ATR‐101, whereas U18666A enhanced cholesterol accumulation and ATP depletion together with ATR‐101. ATR‐101 repressed ABCA1, ABCG1, and IDOL transcription by mechanisms that were distinct from the mechanisms that caused cholesterol accumulation.Conclusions and ImplicationsInhibition of multiple ABC transporters and the consequent accumulation of cholesterol mediated the cytotoxicity of ATR‐101. Compounds that replicate these effects in tumours are likely to be useful in the treatment of ACC.
dc.publisherWiley Periodicals, Inc.
dc.titleATR‐101 inhibits cholesterol efflux and cortisol secretion by ATP‐binding cassette transporters, causing cytotoxic cholesterol accumulation in adrenocortical carcinoma cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138270/1/bph13951-sup-0001-supplementary_material.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138270/2/bph13951_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138270/3/bph13951.pdf
dc.identifier.doi10.1111/bph.13951
dc.identifier.sourceBritish Journal of Pharmacology
dc.identifier.citedreferenceSbiera S, Leich E, Liebisch G, Sbiera I, Schirbel A, Wiemer L et al. ( 2015 ). Mitotane Inhibits sterol‐O‐acyl transferase 1 triggering lipid‐mediated endoplasmic reticulum stress and apoptosis in adrenocortical carcinoma cells. Endocrinology 156: 3895 – 3908.
dc.identifier.citedreferenceSouthan C, Sharman JL, Benson HE, Faccenda E, Pawson AJ, Alexander SPH et al. ( 2016 ). The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands. Nucl Acids Res 44: D1054 – D1068.
dc.identifier.citedreferenceTakahashi M, Luu‐The V, Labrie F ( 1990 ). Inhibitory effect of synthetic progestins, 4‐MA and cyanoketone on human placental 3 beta‐hydroxysteroid dehydrogenase/5‐4‐ene‐isomerase activity. J Steroid Biochem Mol Biol 37: 231 – 236.
dc.identifier.citedreferenceTanaka A, Terasawa T, Hagihara H, Ishibe N, Sawada M, Sakuma Y et al. ( 1998 ). Inhibitors of acyl‐CoA:cholesterol O‐acyltransferase. 3. Discovery of a novel series of N ‐alkyl‐ N ‐[(fluorophenoxy)benzyl]‐ N ′‐arylureas with weak toxicological effects on adrenal glands. J Med Chem 41: 4408 – 4420.
dc.identifier.citedreferenceTardif JC, Gregoire J, L’allier PL, Anderson TJ, Bertrand O, Reeves F et al. ( 2004 ). Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 110: 3372 – 3377.
dc.identifier.citedreferenceTarling EJ, Edwards PA ( 2011 ). ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter. Proc Natl Acad Sci U S A 108: 19719 – 19724.
dc.identifier.citedreferenceTessner TG, Stenson WF ( 2000 ). Overexpression of MDR1 in an intestinal cell line results in increased cholesterol uptake from micelles. Biochem Biophys Res Commun 267: 565 – 571.
dc.identifier.citedreferenceTrivedi BK, Holmes A, Stoeber TL, Blankley CJ, Roark WH, Picard JA et al. ( 1993 ). Inhibitors of acyl‐Coa:cholesterol acyltransferase. 4. A novel series of urea ACAT inhibitors as potential hypocholesterolemic agents. J Med Chem 36: 3300 – 3307.
dc.identifier.citedreferenceTrivedi BK, Purchase TS, Holmes A, Augelli‐Szafran CE, Essenburg AD, Hamelehle KL et al. ( 1994 ). Inhibitors of acyl‐CoA:cholesterol acyltransferase (ACAT). 7. Development of a series of substituted N‐phenyl‐N’‐[(1‐phenylcyclopentyl)methyl]ureas with enhanced hypocholesterolemic activity. J Med Chem 37: 1652 – 1659.
dc.identifier.citedreferenceVanier MT ( 2010 ). Niemann‐Pick disease type C. Orphanet J Rare Dis 5: 16.
dc.identifier.citedreferenceWang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH et al. ( 2007 ). Macrophage ABCA1 and ABCG1, but not SR‐BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 117: 2216 – 2224.
dc.identifier.citedreferenceWolfgang GH, Macdonald JR, Vernetti LA, Pegg DG, Robertson DG ( 1995 ). Biochemical alterations in guinea pig adrenal cortex following administration of PD 132301‐2, an inhibitor of acyl‐CoA:cholesterol acyltransferase. Life Sci 56: 1089 – 1093.
dc.identifier.citedreferenceWollam J, Antebi A ( 2011 ). Sterol regulation of metabolism, homeostasis, and development. Annu Rev Biochem 80: 885 – 916.
dc.identifier.citedreferenceYamauchi Y, Iwamoto N, Rogers MA, Abe‐Dohmae S, Fujimoto T, Chang CC et al. ( 2015 ). Deficiency in the lipid exporter ABCA1 impairs retrograde sterol movement and disrupts sterol sensing at the endoplasmic reticulum. J Biol Chem 290: 23464 – 23477.
dc.identifier.citedreferenceYu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M ( 2005 ). Altered cholesterol metabolism in Niemann–Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 280: 11731 – 11739.
dc.identifier.citedreferenceZheng S, Cherniack AD, Dewal N, Moffitt RA, Danilova L, Murray BA et al. ( 2016 ). Comprehensive Pan‐Genomic characterization of adrenocortical carcinoma. Cancer Cell 29: 723 – 736.
dc.identifier.citedreferenceAlexander SPH, Cidlowski JA, Kelly E, Marrion N, Peters JA, Benson HE et al. ( 2015a ). The Concise Guide to PHARMACOLOGY 2015/16: Nuclear hormone receptors. Br J Pharmacol 172: 5956 – 5978.
dc.identifier.citedreferenceAlexander SPH, Fabbro D, Kelly E, Marrion N, Peters JA, Benson HE et al. ( 2015b ). The Concise Guide to PHARMACOLOGY 2015/16: Enzymes. Br J Pharmacol 172: 6024 – 6109.
dc.identifier.citedreferenceAlexander SPH, Kelly E, Marrion N, Peters JA, Benson HE, Faccenda E et al. ( 2015c ). The Concise Guide to PHARMACOLOGY 2015/16: Transporters. Br J Pharmacol 172: 6110 – 6202.
dc.identifier.citedreferenceAltuvia S, Stein WD, Goldenberg S, Kane SE, Pastan I, Gottesman MM ( 1993 ). Targeted disruption of the mouse mdr1b gene reveals that steroid hormones enhance MDR gene expression. J Biol Chem 268: 27127 – 27132.
dc.identifier.citedreferenceAn S, Jang YS, Park JS, Kwon BM, Paik YK, Jeong TS ( 2008 ). Inhibition of acyl‐coenzyme A:cholesterol acyltransferase stimulates cholesterol efflux from macrophages and stimulates farnesoid X receptor in hepatocytes. Exp Mol Med 40: 407 – 417.
dc.identifier.citedreferenceAssie G, Letouze E, Fassnacht M, Jouinot A, Luscap W, Barreau O et al. ( 2014 ). Integrated genomic characterization of adrenocortical carcinoma. Nat Genet 46: 607 – 612.
dc.identifier.citedreferenceBentz J, O’connor MP, Bednarczyk D, Coleman J, Lee C, Palm J et al. ( 2013 ). Variability in P‐glycoprotein inhibitory potency (IC(5)(0)) using various in vitro experimental systems: implications for universal digoxin drug‐drug interaction risk assessment decision criteria. Drug Metab Dispos 41: 1347 – 1366.
dc.identifier.citedreferenceBose HS, Lingappa VR, Miller WL ( 2002 ). Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417: 87 – 91.
dc.identifier.citedreferenceBoussicault L, Alves S, Lamaziere A, Planques A, Heck N, Moumne L et al. ( 2016 ). CYP46A1, the rate‐limiting enzyme for cholesterol degradation, is neuroprotective in Huntington’s disease. Brain 139: 953 – 970.
dc.identifier.citedreferenceBrecher PI, Hyun Y ( 1978 ). Effect of 4‐aminopyrazolopyrimidine and aminoglutethimide on cholesteryl metabolism and steroidogenesis in the rat adrenal. Endocrinology 102: 1404 – 1413.
dc.identifier.citedreferenceBuja LM, Kovanen PT, Bilheimer DW ( 1979 ). Cellular pathology of homozygous familial hypercholesterolemia. Am J Pathol 97: 327 – 357.
dc.identifier.citedreferenceCheng Y, Kerppola RE, Kerppola TK ( 2016 ). ATR‐101 disrupts mitochondrial functions in adrenocortical carcinoma cells and in vivo. Endocr Relat Cancer 23: 1 – 19.
dc.identifier.citedreferenceChristiansen‐Weber TA, Voland JR, Wu Y, Ngo K, Roland BL, Nguyen S et al. ( 2000 ). Functional loss of ABCA1 in mice causes severe placental malformation, aberrant lipid distribution, and kidney glomerulonephritis as well as high‐density lipoprotein cholesterol deficiency. Am J Pathol 157: 1017 – 1029.
dc.identifier.citedreferenceCreemers SG, Hofland LJ, Korpershoek E, Franssen GJ, Van Kemenade FJ, De Herder WW et al. ( 2016 ). Future directions in the diagnosis and medical treatment of adrenocortical carcinoma. Endocr Relat Cancer 23: R43 – R69.
dc.identifier.citedreferenceCserepes J, Szentpetery Z, Seres L, Ozvegy‐Laczka C, Langmann T, Schmitz G et al. ( 2004 ). Functional expression and characterization of the human ABCG1 and ABCG4 proteins: indications for heterodimerization. Biochem Biophys Res Commun 320: 860 – 867.
dc.identifier.citedreferenceCurtis MJ, Bond RA, Spina D, Ahluwalia A, Alexander SP, Giembycz MA et al. ( 2015 ). Experimental design and analysis and their reporting: new guidance for publication in BJP. Br J Pharmacol 172: 3461 – 3471.
dc.identifier.citedreferenceDebry P, Nash EA, Neklason DW, Metherall JE ( 1997 ). Role of multidrug resistance P‐glycoproteins in cholesterol esterification. J Biol Chem 272: 1026 – 1031.
dc.identifier.citedreferenceDibartolomeis MJ, Williams C, Jefcoate CR ( 1986 ). Inhibition of ACTH action on cultured bovine adrenal cortical cells by 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin through a redistribution of cholesterol. J Biol Chem 261: 4432 – 4437.
dc.identifier.citedreferenceDominick MA, Mcguire EJ, Reindel JF, Bobrowski WF, Bocan TM, Gough AW ( 1993 ). Subacute toxicity of a novel inhibitor of acyl‐CoA: cholesterol acyltransferase in beagle dogs. Fundam Appl Toxicol 20: 217 – 224.
dc.identifier.citedreferenceFallahsharoudi A, De Kock N, Johnsson M, Ubhayasekera SJ, Bergquist J, Wright D et al. ( 2015 ). Domestication effects on stress induced steroid secretion and adrenal gene expression in chickens. Sci Rep 5: 15345.
dc.identifier.citedreferenceGarrido M, Peng HM, Yoshimoto FK, Upadhyay SK, Bratoeff E, Auchus RJ ( 2014 ). A‐ring modified steroidal azoles retaining similar potent and slowly reversible CYP17A1 inhibition as abiraterone. J Steroid Biochem Mol Biol 143: 1 – 10.
dc.identifier.citedreferenceGoldstein JL, Brown MS ( 2009 ). The LDL receptor. Arterioscler Thromb Vasc Biol 29: 431 – 438.
dc.identifier.citedreferenceGraham A ( 2015 ). Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 89: 982 – 992.
dc.identifier.citedreferenceGuthrie GP Jr, Mcallister RG Jr, Kotchen TA ( 1983 ). Effects of intravenous and oral verapamil upon pressor and adrenal steroidogenic responses in normal man. J Clin Endocrinol Metab 57: 339 – 343.
dc.identifier.citedreferenceIkonen E ( 2008 ). Cellular cholesterol trafficking and compartmentalization. Nat Rev Mol Cell Biol 9: 125 – 138.
dc.identifier.citedreferenceJohansson M, Larsson C, Bergman A, Lund BO ( 1998 ). Structure‐activity relationship for inhibition of CYP11B1‐dependent glucocorticoid synthesis in Y1 cells by aryl methyl sulfones. Pharmacol Toxicol 83: 225 – 230.
dc.identifier.citedreferenceJunquero D, Pilon A, Carilla‐Durand E, Patoiseau JF, Tarayre JP, Torpier G et al. ( 2001 ). Lack of toxic effects of F 12511, a novel potent inhibitor of acyl‐coenzyme A: cholesterol O‐acyltransferase, on human adrenocortical cells in culture. Biochem Pharmacol 61: 387 – 398.
dc.identifier.citedreferenceKellner‐Weibel G, Yancey PG, Jerome WG, Walser T, Mason RP, Phillips MC et al. ( 1999 ). Crystallization of free cholesterol in model macrophage foam cells. Arterioscler Thromb Vasc Biol 19: 1891 – 1898.
dc.identifier.citedreferenceKobayashi K, Weiss RE, Vogelzang NJ, Vokes EE, Janisch L, Ratain MJ ( 1996 ). Mineralocorticoid insufficiency due to suramin therapy. Cancer 78: 2411 – 2420.
dc.identifier.citedreferenceLapensee CR, Mann JE, Rainey WE, Crudo V, Hunt SW 3rd, Hammer GD ( 2016 ). ATR‐101, a selective and potent inhibitor of Acyl‐CoA Acyltransferase 1, induces apoptosis in H295R adrenocortical cells and in the adrenal cortex of dogs. Endocrinology 157: 1775 – 1788.
dc.identifier.citedreferenceLe Goff W, Settle M, Greene DJ, Morton RE, Smith JD ( 2006 ). Reevaluation of the role of the multidrug‐resistant P‐glycoprotein in cellular cholesterol homeostasis. J Lipid Res 47: 51 – 58.
dc.identifier.citedreferenceLehoux JG, Lefebvre A ( 1991 ). Short‐term effects of ACTH on the low‐density lipoprotein receptor mRNA level in rat and hamster adrenals. J Mol Endocrinol 6: 223 – 230.
dc.identifier.citedreferenceLuker GD, Nilsson KR, Covey DF, Piwnica‐Worms D ( 1999 ). Multidrug resistance (MDR1) P‐glycoprotein enhances esterification of plasma membrane cholesterol. J Biol Chem 274: 6979 – 6991.
dc.identifier.citedreferenceMaiter D, Bex M, Vroonen L, T’sjoen G, Gil T, Banh C et al. ( 2016 ). Efficacy and safety of mitotane in the treatment of adrenocortical carcinoma: a retrospective study in 34 Belgian patients. Ann Endocrinol (Paris) 77: 578 – 585.
dc.identifier.citedreferenceMatsuo M, Hashimoto M, Suzuki J, Iwanami K, Tomoi M, Shimomura K ( 1996 ). Difference between normal and WHHL rabbits in susceptibility to the adrenal toxicity of an acyl‐CoA:cholesterol acyltransferase inhibitor, FR145237. Toxicol Appl Pharmacol 140: 387 – 392.
dc.identifier.citedreferenceMaxfield FR, Van Meer G ( 2010 ). Cholesterol, the central lipid of mammalian cells. Curr Opin Cell Biol 22: 422 – 429.
dc.identifier.citedreferenceMcneish J, Aiello RJ, Guyot D, Turi T, Gabel C, Aldinger C et al. ( 2000 ). High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP‐binding cassette transporter‐1. Proc Natl Acad Sci U S A 97: 4245 – 4250.
dc.identifier.citedreferenceMeiner VL, Cases S, Myers HM, Sande ER, Bellosta S, Schambelan M et al. ( 1996 ). Disruption of the acyl‐CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc Natl Acad Sci U S A 93: 14041 – 14046.
dc.identifier.citedreferenceMeuwese MC, De Groot E, Duivenvoorden R, Trip MD, Ose L, Maritz FJ et al. ( 2009 ). ACAT inhibition and progression of carotid atherosclerosis in patients with familial hypercholesterolemia: the CAPTIVATE randomized trial. JAMA 301: 1131 – 1139.
dc.identifier.citedreferenceMidzak AS, Chen H, Aon MA, Papadopoulos V, Zirkin BR ( 2011 ). ATP synthesis, mitochondrial function, and steroid biosynthesis in rodent primary and tumor Leydig cells. Biol Reprod 84: 976 – 985.
dc.identifier.citedreferenceMiller WL, Bose HS ( 2011 ). Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 52: 2111 – 2135.
dc.identifier.citedreferenceMitsche MA, Mcdonald JG, Hobbs HH, Cohen JC ( 2015 ). Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell‐type specific pathways. Elife 4: e07999.
dc.identifier.citedreferenceMorita SY, Kobayashi A, Takanezawa Y, Kioka N, Handa T, Arai H et al. ( 2007 ). Bile salt‐dependent efflux of cellular phospholipids mediated by ATP binding cassette protein B4. Hepatology 46: 188 – 199.
dc.identifier.citedreferenceMuller MB, Keck ME, Binder EB, Kresse AE, Hagemeyer TP, Landgraf R et al. ( 2003 ). ABCB1 (MDR1)‐type P‐glycoproteins at the blood‐brain barrier modulate the activity of the hypothalamic‐pituitary‐adrenocortical system: implications for affective disorder. Neuropsychopharmacology 28: 1991 – 1999.
dc.identifier.citedreferenceNieland TJ, Chroni A, Fitzgerald ML, Maliga Z, Zannis VI, Kirchhausen T et al. ( 2004 ). Cross‐inhibition of SR‐BI‐ and ABCA1‐mediated cholesterol transport by the small molecules BLT‐4 and glyburide. J Lipid Res 45: 1256 – 1265.
dc.identifier.citedreferenceOrso E, Broccardo C, Kaminski WE, Bottcher A, Liebisch G, Drobnik W et al. ( 2000 ). Transport of lipids from golgi to plasma membrane is defective in tangier disease patients and Abc1‐deficient mice. Nat Genet 24: 192 – 196.
dc.identifier.citedreferenceOu J, Tu H, Shan B, Luk A, Debose‐Boyd RA, Bashmakov Y et al. ( 2001 ). Unsaturated fatty acids inhibit transcription of the sterol regulatory element‐binding protein‐1c (SREBP‐1c) gene by antagonizing ligand‐dependent activation of the LXR. Proc Natl Acad Sci U S A 98: 6027 – 6032.
dc.identifier.citedreferenceOut R, Jessup W, Le Goff W, Hoekstra M, Gelissen IC, Zhao Y et al. ( 2008 ). Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1. Circ Res 102: 113 – 120.
dc.identifier.citedreferencePandey A, Rudraiah M ( 2015 ). Analysis of endocrine disruption effect of Roundup® in adrenal gland of male rats. Toxicol Rep 2: 1075 – 1085.
dc.identifier.citedreferencePokhrel L, Maezawa I, Nguyen TD, Chang KO, Jin LW, Hua DH ( 2012 ). Inhibition of Acyl‐CoA: cholesterol acyltransferase (ACAT), overexpression of cholesterol transporter gene, and protection of amyloid beta (Abeta) oligomers‐induced neuronal cell death by tricyclic pyrone molecules. J Med Chem 55: 8969 – 8973.
dc.identifier.citedreferencePorto AF ( 2014 ). Lysosomal acid lipase deficiency: diagnosis and treatment of Wolman and Cholesteryl Ester Storage Diseases. Pediatr Endocrinol Rev 12 ( Suppl 1 ): 125 – 132.
dc.identifier.citedreferenceReaven E, Leers‐Sucheta S, Nomoto A, Azhar S ( 2001 ). Expression of scavenger receptor class B type 1 (SR‐BI) promotes microvillar channel formation and selective cholesteryl ester transport in a heterologous reconstituted system. Proc Natl Acad Sci U S A 98: 1613 – 1618.
dc.identifier.citedreferenceReindel JF, Dominick MA, Bocan TM, Gough AW, Mcguire EJ ( 1994 ). Toxicologic effects of a novel acyl‐CoA:cholesterol acyltransferase inhibitor in cynomolgus monkeys. Toxicol Pathol 22: 510 – 518.
dc.identifier.citedreferenceRodriguez A, Usher DC ( 2002 ). Anti‐atherogenic effects of the acyl‐CoA:cholesterol acyltransferase inhibitor, avasimibe (CI‐1011), in cultured primary human macrophages. Atherosclerosis 161: 45 – 54.
dc.identifier.citedreferenceSahakitrungruang T ( 2015 ). Clinical and molecular review of atypical congenital adrenal hyperplasia. Ann Pediatr Endocrinol Metab 20: 1 – 7.
dc.identifier.citedreferenceShapiro R, Carroll PB, Tzakis AG, Cemaj S, Lopatin WB, Nakazato P ( 1990 ). Adrenal reserve in renal transplant recipients with cyclosporine, azathioprine, and prednisone immunosuppression. Transplantation 49: 1011 – 1013.
dc.identifier.citedreferenceSliskovic DR, Picard JA, O’brien PM, Liao P, Roark WH, Roth BD et al. ( 1998 ). Alpha‐substituted malonester amides: tools to define the relationship between ACAT inhibition and adrenal toxicity. J Med Chem 41: 682 – 690.
dc.identifier.citedreferenceSliskovic DR, Picard JA, Krause BR ( 2002 ). ACAT inhibitors: the search for a novel and effective treatment of hypercholesterolemia and atherosclerosis. Prog Med Chem 39: 121 – 171.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.