Show simple item record

Compound heterozygosity for lossâ ofâ function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation

dc.contributor.authorOprescu, Stephanie N.
dc.contributor.authorChepa‐lotrea, Xenia
dc.contributor.authorTakase, Ryuichi
dc.contributor.authorGolas, Gretchen
dc.contributor.authorMarkello, Thomas C.
dc.contributor.authorAdams, David R.
dc.contributor.authorToro, Camilo
dc.contributor.authorGropman, Andrea L.
dc.contributor.authorHou, Ya‐ming
dc.contributor.authorMalicdan, May Christine V.
dc.contributor.authorGahl, William A.
dc.contributor.authorTifft, Cynthia J.
dc.contributor.authorAntonellis, Anthony
dc.date.accessioned2017-10-05T18:17:52Z
dc.date.available2019-01-07T18:34:36Zen
dc.date.issued2017-10
dc.identifier.citationOprescu, Stephanie N.; Chepa‐lotrea, Xenia ; Takase, Ryuichi; Golas, Gretchen; Markello, Thomas C.; Adams, David R.; Toro, Camilo; Gropman, Andrea L.; Hou, Ya‐ming ; Malicdan, May Christine V.; Gahl, William A.; Tifft, Cynthia J.; Antonellis, Anthony (2017). "Compound heterozygosity for lossâ ofâ function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation." Human Mutation 38(10): 1412-1420.
dc.identifier.issn1059-7794
dc.identifier.issn1098-1004
dc.identifier.urihttps://hdl.handle.net/2027.42/138288
dc.description.abstractAminoacylâ tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in myriad dominant and recessive disease phenotypes. Glycylâ tRNA synthetase (GARS) is a bifunctional ARS that charges tRNAGly in the cytoplasm and mitochondria. GARS variants have been associated with dominant Charcotâ Marieâ Tooth disease but have not been convincingly implicated in recessive phenotypes. Here, we describe a patient from the NIH Undiagnosed Diseases Program with a multisystem, developmental phenotype. Wholeâ exome sequence analysis revealed that the patient is compound heterozygous for one frameshift (p.Glu83Ilefs*6) and one missense (p.Arg310Gln) GARS variant. Using in vitro and in vivo functional studies, we show that both GARS variants cause a lossâ ofâ function effect: the frameshift variant results in depleted protein levels and the missense variant reduces GARS tRNA charging activity. In support of GARS variant pathogenicity, our patient shows striking phenotypic overlap with other patients having ARSâ related recessive diseases, including features associated with variants in both cytoplasmic and mitochondrial ARSs; this observation is consistent with the essential function of GARS in both cellular locations. In summary, our clinical, genetic, and functional analyses expand the phenotypic spectrum associated with GARS variants.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdevelopmental syndrome
dc.subject.otheraminoacylâ tRNA synthetase
dc.subject.othergrowth retardation
dc.subject.otherglycylâ tRNA synthetase
dc.subject.otherGARS
dc.titleCompound heterozygosity for lossâ ofâ function GARS variants results in a multisystem developmental syndrome that includes severe growth retardation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/1/humu23287-sup-0001-text.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/2/humu23287.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138288/3/humu23287_am.pdf
dc.identifier.doi10.1002/humu.23287
dc.identifier.sourceHuman Mutation
dc.identifier.citedreferenceMcMillan, H. J., Schwartzentruber, J., Smith, A., Lee, S., Chakraborty, P., Bulman, D. E., â ¦ Geraghty, M. T. ( 2014 ). Compound heterozygous mutations in glycylâ tRNA synthetase are a proposed cause of systemic mitochondrial disease. BMC Medical Genetics, 15, 36.
dc.identifier.citedreferenceAntonellis, A., Ellsworth, R. E., Sambuughin, N., Puls, I., Abel, A., Leeâ Lin, Sâ Q., â ¦ Green E. D. ( 2003 ). Glycyl tRNA synthetase mutations in Charcotâ Marieâ Tooth disease type 2D and distal spinal muscular atrophy type V. American Journal of Human Genetics, 72, 1293 â 1299.
dc.identifier.citedreferenceAntonellis, A., & Green E. D. ( 2008 ). The role of aminoacylâ tRNA synthetases in genetic diseases. Annual Review of Genomics and Human Genetics, 9, 87 â 107.
dc.identifier.citedreferenceAntonellis, A., Leeâ Lin, Sâ Q., Wasterlain, A., Leo, P., Quezado, M., Goldfarb, L. G., â ¦ Green E. D. ( 2006 ). Functional analyses of glycylâ tRNA synthetase mutations suggest a key role for tRNAâ charging enzymes in peripheral axons. Journal of Neuroscience, 26, 10397 â 10406.
dc.identifier.citedreferenceBentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., Brown, C. G., â ¦ Smith, A. J. ( 2008 ). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53 â 59.
dc.identifier.citedreferenceBoeke, J. D., LaCroute, F., & Fink, G. R. ( 1984 ). A positive selection for mutants lacking orotidineâ 5’â phosphate decarboxylase activity in yeast: 5â fluoroâ orotic acid resistance. Molecular Genetics and Genetics, 197, 345 â 346.
dc.identifier.citedreferenceChang, Câ Y., Chien, Câ I., Chang, Câ P., Lin, Bâ C., & Wang, Câ C. ( 2016 ). A WHEP domain regulates the dynamic structure and activity of Caenorhabditis elegans glycylâ tRNA synthetase. The Journal of Biological Chemistry, 291, 16567 â 16575.
dc.identifier.citedreferenceChien, Câ I., Chen, Yâ W., Wu, Yâ H., Chang, Câ Y., Wang, Tâ L., & Wang Câ C. ( 2014 ). Functional substitution of a eukaryotic glycylâ tRNA synthetase with an evolutionarily unrelated bacterial cognate enzyme. PLoS One, 9, e94659.
dc.identifier.citedreferenceChihara, T., Luginbuhl, D., & Luo, L. ( 2007 ). Cytoplasmic and mitochondrial protein translation in axonal and dendritic terminal arborization. Nature Neuroscience, 10, 828 â 837.
dc.identifier.citedreferenceDelarue, M. ( 1995 ). Aminoacylâ tRNA synthetases. Current Opinion in Structural Biology, 5, 48 â 55.
dc.identifier.citedreferenceGahl, W. A., Markello, T. C., Toro, C., Fajardo, K. F., Sincan, M., Gill, F., â ¦ Adams, D. ( 2012 ). The National Institutes of Health Undiagnosed Diseases Program: Insights into rare diseases. Genetics in Medicine, 14, 51 â 59.
dc.identifier.citedreferenceGahl, W. A., & Tifft, C. J. ( 2011 ). The NIH Undiagnosed Diseases Program: Lessons learned. JAMA, 305, 1904 â 1905.
dc.identifier.citedreferenceGnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., Brockman, W., â ¦ Nusbaum, C. ( 2009 ). Solution hybrid selection with ultraâ long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182 â 189.
dc.identifier.citedreferenceGriffin, L. B., Sakaguchi, R., McGuigan, D., Gonzalez, M. A., Searby, C., Züchner, S., â ¦ Antonellis, A. ( 2014 ). Impaired function is a common feature of neuropathyâ associated glycylâ tRNA synthetase mutations. Human Mutation, 35, 1363 â 1371.
dc.identifier.citedreferenceHe, W., Bai, G., Zhou, H., Wei, N., White, N. M., Lauer, J., â ¦ Yang, X. L. ( 2015 ). CMT2D neuropathy is linked to the neomorphic binding activity of glycylâ tRNA synthetase. Nature, 526, 710 â 714.
dc.identifier.citedreferenceHou, Y. M., Westhof, E., & Giegé, R. ( 1993 ). An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proceedings of the National Academy of Science of the United States of America, 90, 6776 â 6780.
dc.identifier.citedreferenceLek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., â ¦ MacArthur, D. G. ( 2016 ). Analysis of proteinâ coding genetic variation in 60,706 humans. Nature, 536, 285 â 291.
dc.identifier.citedreferenceMarkello, T. C., Han, T., Carlsonâ Donohoe, H., Ahaghotu, C., Harper, U., Jones, M., â ¦ Boerkoel, C. F. ( 2012 ). Recombination mapping using Boolean logic and highâ density SNP genotyping for exome sequence filtering. Molecular Genetics and Metabolism, 105, 382 â 389.
dc.identifier.citedreferenceMcLaughlin, H. M., Sakaguchi, R., Liu, C., Igarashi, T., Pehlivan, D., Chu, K., â ¦ Antonellis, A. 2010. Compound heterozygosity for lossâ ofâ function lysylâ tRNA synthetase mutations in a patient with peripheral neuropathy. American Journal of Human Genetics, 87, 560 â 566.
dc.identifier.citedreferenceMcMillan, H. J., Humphreys, P., Smith, A., Schwartzentruber, J., Chakraborty, P., Bulman, D. E., â ¦ Geraghty, M. T. ( 2015 ). Congenital visual impairment and progressive microcephaly due to lysylâ transfer ribonucleic acid (RNA) synthetase (KARS) mutations. Journal of Child Neurology, 30, 1037 â 1043.
dc.identifier.citedreferenceMotley, W. W., Seburn, K. L., Nawaz, M. H., Miers, K. E., Cheng, J., Antonellis, A., â ¦ Burgess, R. W. 2011. Charcotâ Marieâ Toothâ linked mutant GARS is toxic to peripheral neurons independent of wildâ type GARS levels. PLoS Genetics, 7, e1002399.
dc.identifier.citedreferenceNangle, L. A., Zhang, W., Xie, W., Yang, Xâ L., & Schimmel, P. ( 2007 ). Charcotâ Marieâ Tooth diseaseâ associated mutant tRNA synthetases linked to altered dimer interface and neurite distribution defect. Proceedings of the National Academy of Science of the United States of America, 104, 11239 â 11244.
dc.identifier.citedreferenceOprescu, S. N., Griffin, L. B., Beg, A. A., & Antonellis, A. ( 2017 ). Predicting the pathogenicity of aminoacylâ tRNA synthetase mutations. Methods, 113, 139 â 151.
dc.identifier.citedreferenceSantosâ Cortez, R. L., Lee, K., Azeem, Z., Antonellis, P. J., Pollock, L. M., Khan, S., â ¦ Leal, S. M. 2013. Mutations in KARS, encoding lysylâ tRNA synthetase, cause autosomalâ recessive nonsyndromic hearing impairment DFNB89. American Journal of Human Genetics, 93, 132 â 140.
dc.identifier.citedreferenceSchreier, A. A., & Schimmel, P. R. ( 1972 ). Transfer ribonucleic acid synthetase catalyzed deacylation of aminoacyl transfer ribonucleic acid in the absence of adenosine monophosphate and pyrophosphate. Biochemistry, 11, 1582 â 1589.
dc.identifier.citedreferenceSeburn, K. L., Nangle, L. A., Cox, G. A., Schimmel, P., & Burgess, R. W. ( 2006 ). An active dominant mutation of glycylâ tRNA synthetase causes neuropathy in a Charcotâ Marieâ Tooth 2D mouse model. Neuron, 51, 715 â 726.
dc.identifier.citedreferenceSivakumar, K., Kyriakides, T., Puls, I., Nicholson, G. A., Funalot, B., Antonellis, A., â ¦ Goldfarb, L. G. ( 2005 ). Phenotypic spectrum of disorders associated with glycylâ tRNA synthetase mutations. Brain, 128, 2304 â 2314.
dc.identifier.citedreferenceTeer, J. K., Bonnycastle, L. L., Chines, P. S., Hansen, N. F., Aoyama, N., Swift, A. J., â ¦ Biesecker, L. G. 2010. Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Genome Research, 20, 1420 â 1431.
dc.identifier.citedreferenceTeer, J. K., Green, E. D., Mullikin, J. C., & Biesecker, L. G. ( 2012 ). VarSifter: Visualizing and analyzing exomeâ scale sequence variation data on a desktop computer. Bioinformatics, 28, 599 â 600.
dc.identifier.citedreferenceTurner, R. J., Lovato, M., & Schimmel, P. ( 2000 ). One of two genes encoding glycylâ tRNA synthetase in Saccharomyces cerevisiae provides mitochondrial and cytoplasmic functions. Journal of Biological Chemistry, 275, 27681 â 27688.
dc.identifier.citedreferenceZhang, X., Ling, J., Barcia, G., Jing, L., Wu, J., Barry, B. J., â ¦ Nabbout, R. 2014. Mutations in QARS, encoding glutaminylâ tRNA synthetase, cause progressive microcephaly, cerebralâ cerebellar atrophy, and intractable seizures. American Journal of Human Genetics, 94, 547 â 558.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.