Show simple item record

Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production

dc.contributor.authorGerson, Jacqueline R.
dc.contributor.authorDriscoll, Charles T.
dc.contributor.authorDemers, Jason D.
dc.contributor.authorSauer, Amy K.
dc.contributor.authorBlackwell, Bradley D.
dc.contributor.authorMontesdeoca, Mario R.
dc.contributor.authorShanley, James B.
dc.contributor.authorRoss, Donald S.
dc.date.accessioned2017-10-05T18:18:10Z
dc.date.available2018-11-01T16:42:00Zen
dc.date.issued2017-08
dc.identifier.citationGerson, Jacqueline R.; Driscoll, Charles T.; Demers, Jason D.; Sauer, Amy K.; Blackwell, Bradley D.; Montesdeoca, Mario R.; Shanley, James B.; Ross, Donald S. (2017). "Deposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production." Journal of Geophysical Research: Biogeosciences 122(8): 1922-1939.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/138300
dc.description.abstractGlobal mercury contamination largely results from direct primary atmospheric and secondary legacy emissions, which can be deposited to ecosystems, converted to methylmercury, and bioaccumulated along food chains. We examined organic horizon soil samples collected across an elevational gradient on Whiteface Mountain in the Adirondack region of New York State, USA to determine spatial patterns in methylmercury concentrations across a forested montane landscape. We found that soil methylmercury concentrations were highest in the midelevation coniferous zone (0.39 ± 0.07 ng/g) compared to the higher elevation alpine zone (0.28 ± 0.04 ng/g) and particularly the lower elevation deciduous zone (0.17 ± 0.02 ng/g), while the percent of total mercury as methylmercury in soils decreased with elevation. We also found a seasonal pattern in soil methylmercury concentrations, with peak methylmercury values occurring in July. Given elevational patterns in temperature and bioavailable total mercury (derived from mineralization of soil organic matter), soil methylmercury concentrations appear to be driven by soil processing of ionic Hg, as opposed to atmospheric deposition of methylmercury. These methylmercury results are consistent with spatial patterns of mercury concentrations in songbird species observed from other studies, suggesting that future declines in mercury emissions could be important for reducing exposure of mercury to montane avian species.Key PointsTotal mercury and methylmercury concentrations and fluxes are examined across an elevational gradient on an Adirondack, New York mountainMethylmercury concentrations across the elevational gradient are greatest in midelevation coniferous zonesSoil methylmercury concentrations are driven by the internal processing of mercury, rather than external inputs of methylmercuryPlain Language SummaryOnce mercury is emitted into the atmosphere by anthropogenic sources, it can be deposited onto the Earth’s surface. This mercury can then be converted to its toxic form of methylmercury by microbes in the soil and can accumulate in birds, altering physiology, behavior, and reproduction. We examined soils from Whiteface Mountain in the Adirondack region of New York State, USA to determine patterns in the production of methylmercury. We found that methylmercury in soils was highest in the mid‐elevation coniferous forests of the mountain and that the concentration appeared to be driven by soil microbes rather than direct deposition of mercury from the atmosphere. The finding of peak methylmercury at mid‐elevations was consistent with previous studies showing peak bird mercury concentrations at the same elevation. Thus, reductions in methylmercury concentrations in these forests is important to reducing bird mercury concentrations.
dc.publisherUniv. of California Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othermountain
dc.subject.otherforests
dc.subject.othermercury
dc.subject.otherdeposition
dc.subject.otherAdirondacks
dc.subject.othermethylmercury
dc.titleDeposition of mercury in forests across a montane elevation gradient: Elevational and seasonal patterns in methylmercury inputs and production
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/1/jgrg20832_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/2/jgrg20832-sup-0001-2016JG003721-SI.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138300/3/jgrg20832.pdf
dc.identifier.doi10.1002/2016JG003721
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferenceRahman, M., and H. Kingston ( 2005 ), Development of a microwave‐assisted extraction method and isotopic validation of mercury species in soils and sediments, J. Anal. At. Spectrom., 20, 183 – 191.
dc.identifier.citedreferenceMunthe, J., H. Hultberg, and A. Iverfeldt ( 1995 ), Mechanisms of deposition of methylmercury and mercury to coniferous forests, Water Air Soil Pollut., 80, 363 – 371.
dc.identifier.citedreferenceObrist, D. ( 2012 ), Mercury distribution across 14 U.S. forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury, Environ. Sci. Technol., 46 ( 11 ), 5921 – 5930, doi: 10.1021/es2045579.
dc.identifier.citedreferenceObrist, D., et al. ( 2011 ), Mercury distribution across 14 U.S. forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils, Environ. Sci. Technol., 45 ( 9 ), 3974 – 3981, doi: 10.1021/es104384m.
dc.identifier.citedreferenceObrist, D., D. W. Johnson, and R. L. Edmonds ( 2012 ), Effects of vegetation type on mercury concentrations and pools in two adjacent coniferous and deciduous forests, J. Plant Nutr. Soil Sci., 175, 68 – 77, doi: 10.1002/jpln.201000415.
dc.identifier.citedreferencePodar, M., C. C. Gilmour, C. C. Brandt, A. Soren, S. D. Brown, B. R. Crable, A. V. Palumbo, A. C. Somenahally, and D. A. Elias ( 2015 ), Global prevalence and distribution of genes and microorganisms involved in mercury methylation, Sci. Adv., 1 ( 9 ), 1 – 13, doi: 10.1126/sciadv.1500675.
dc.identifier.citedreferenceRea, A. W., G. J. Keeler, and T. Scherbatskoy ( 1996 ), The deposition of mercury in throughfall and litterfall in the Lake Champlain watershed: A short‐term study, Atmos. Environ., 30 ( 19 ), 3257 – 3263, doi: 10.1016/1352‐2310(96)00087‐8.
dc.identifier.citedreferenceRea, A. W., S. E. Lindberg, and G. J. Keeler ( 2000 ), Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces, Environ. Sci. Technol., 34 ( 12 ), 2418 – 2425, doi: 10.1021/es991305k.
dc.identifier.citedreferenceRea, A. W., S. E. Lindberg, and G. J. Keeler ( 2001 ), Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall, Atmos. Environ., 35, 3453 – 3462.
dc.identifier.citedreferenceRea, A. W., S. E. Lindberg, T. Scherbatskoy, and G. J. Keeler ( 2002 ), Mercury accumulation in foliage over time in two northern mixed‐hardwood forests, Water Air Soil Pollut., 133, 49 – 67, doi: 10.1023/A:1012919731598.
dc.identifier.citedreferenceReiners, W. A., R. H. Marks, and P. M. Vitousek ( 1975 ), Heavy metals in subalpine and alpine soils of New Hampshire, Oikos, 26 ( 3 ), 264 – 275.
dc.identifier.citedreferenceRimmer, C. C., K. P. Mcfarland, D. C. Evers, E. K. Miller, Y. Aubry, D. Busby, and R. J. Taylor ( 2005 ), Mercury concentrations in Bicknell’s thrush and other insectivorous passerines in montane forests of northeastern North America, Ecotoxicology, 14, 223 – 240.
dc.identifier.citedreferenceRimmer, C. C., E. K. Miller, K. P. McFarland, R. J. Taylor, and S. D. Faccio ( 2010 ), Mercury bioaccumulation and trophic transfer in the terrestrial food web of a montane forest, Ecotoxicology, 19, 697 – 709, doi: 10.1007/s10646‐009‐0443‐x.
dc.identifier.citedreferenceRisch, M. R., J. F. DeWild, D. P. Krabbenhoft, R. K. Kolka, and L. Zhang ( 2012 ), Litterfall mercury dry deposition in the eastern USA, Environ. Pollut., 161, 284 – 290, doi: 10.1016/j.envpol.2011.06.005.
dc.identifier.citedreferenceRutter, A. P., J. J. Schauer, M. M. Shafer, J. E. Creswell, M. R. Olson, M. Robinson, R. M. Collins, A. M. Parman, T. L. Katzman, and J. L. Mallek ( 2011 ), Dry deposition of gaseous elemental mercury to plants and soils using mercury stable isotopes in a controlled environment, Atmos. Environ., 45 ( 4 ), 848 – 855, doi: 10.1016/j.atmosenv.2010.11.025.
dc.identifier.citedreferenceShanley, J. B., and K. H. Bishop ( 2012 ), Mercury cycling in terrestrial watersheds, in Mercury in the Environment: Pattern and Process, edited by M. Bank, pp. 119 – 141, Univ. of California Press, Berkeley, Calif.
dc.identifier.citedreferenceStankwitz, C., J. M. Kaste, and A. J. Friedland ( 2012 ), Threshold increases in soil lead and mercury from tropospheric deposition across an elevational gradient, Environ. Sci. Technol., 46 ( 15 ), 8061 – 8068, doi: 10.1021/es204208w.
dc.identifier.citedreferenceSteffan, R. J., E. T. Korthals, and M. R. Winfrey ( 1988 ), Effects of acidification on mercury methylation, demethylation, and volatilization in sediments from an acid‐susceptible lake, Appl. Environ. Microbiol., 54 ( 8 ), 2003 – 2009, doi: 10.1023/A:1005972708616.
dc.identifier.citedreferenceTownsend, J. M., C. T. Driscoll, C. C. Rimmer, and K. P. Mcfarland ( 2014 ), Avian, salamander, and forest floor mercury concentrations increase with elevation in a terrestrial ecosystem, Environ. Toxicol. Chem., 33 ( 1 ), 208 – 215, doi: 10.1002/etc.2438.
dc.identifier.citedreferenceTseng, C. M., A. De Diego, F. M. Martin, O. F. X. Donard, A. De Diego, F. M. Martin, and O. F. X. Donard ( 1997 ), Rapid and quantitative microwaveassisted recovery of methylmercury from standard reference sediments, J. Anal. At. Spectrom., 12 ( 6 ), 629 – 635, doi: 10.1039/a700832e.
dc.identifier.citedreferenceUllrich, S. M., T. W. Tanton, and S. A. Abdrashitova ( 2001 ), Mercury in the aquatic environment: A review of factors affecting methylation, Crit. Rev. Environ. Sci. Technol., 31 ( 3 ), 241 – 293, doi: 10.1080/20016491089226.
dc.identifier.citedreferenceWarner, K. A., J. C. J. Bonzongo, E. E. Roden, G. M. Ward, A. C. Green, I. Chaubey, W. B. Lyons, and D. A. Arrington ( 2005 ), Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA, Sci. Total Environ., 347, 187 – 207, doi: 10.1016/j.scitotenv.2004.12.011.
dc.identifier.citedreferenceWatras, C. J., K. A. Morrison, A. Kent, N. Price, O. Regnell, C. Eckley, H. Hintelmann, and T. Hubacher ( 2005 ), Sources of methylmercury to a wetland‐dominated lake in northern Wisconsin, Environ. Sci. Technol., 39 ( 13 ), 4747 – 4758, doi: 10.1021/es040561g.
dc.identifier.citedreferenceWitt, E. L., R. K. Kolka, E. A. Nater, and T. R. Wickman ( 2009 ), Influence of the forest canopy on total and methyl mercury deposition in the boreal forest, Water Air Soil Pollut., 199, 3 – 11, doi: 10.1007/s11270‐008‐9854‐1.
dc.identifier.citedreferenceYu, R. Q., I. Adatto, M. R. Montesdeoca, C. T. Driscoll, M. E. Hines, and T. Barkay ( 2010 ), Mercury methylation in Sphagnum moss mats and its association with sulfate‐reducing bacteria in an acidic Adirondack forest lake wetland, FEMS Microbiol. Ecol., 74 ( 3 ), 655 – 668, doi: 10.1111/j.1574‐6941.2010.00978.x.
dc.identifier.citedreferenceYu, X., C. T. Driscoll, M. Montesdeoca, D. Evers, M. Duron, K. Williams, N. Schoch, and N. C. Kamman ( 2011 ), Spatial patterns of mercury in biota of Adirondack, New York lakes, Ecotoxicology, 20, 1543 – 1554, doi: 10.1007/s10646‐011‐0717‐y.
dc.identifier.citedreferenceYu, X., C. T. Driscoll, R. A. F. Warby, M. Montesdeoca, and C. E. Johnson ( 2014 ), Soil mercury and its response to atmospheric mercury deposition across the northeastern United States, Ecol. Appl., 24 ( 4 ), 812 – 822, doi: 10.1890/13‐0212.1.
dc.identifier.citedreferenceZhou, H., C. Zhou, M. M. Lynam, J. T. Dvonch, J. A. Barres, P. K. Hopke, M. Cohen, and T. M. Holsen ( 2017 ), Atmospheric mercury temporal trends in the northeastern United States from 1992 to 2014: Are measured concentrations responding to decreasing regional emissions?, Environ. Sci. Technol. Lett., doi: 10.1021/acs.estlett.6b00452.
dc.identifier.citedreferenceAmirbahman, A., and I. J. Fernandez ( 2012 ), The role of soils in storage and cycling of mercury, in Mercury in the Environment: Pattern and Process, edited by M. S. Bank, pp. 99 – 118, Univ. of California Press, Berkeley, Calif.
dc.identifier.citedreferenceBlackwell, B. D., and C. T. Driscoll ( 2015 ), Deposition of mercury in forests along a montane elevation gradient, Environ. Sci. Technol., 49 ( 9 ), 5363 – 5370, doi: 10.1021/es505928w.
dc.identifier.citedreferenceBlackwell, B. D., C. T. Driscoll, J. A. Maxwell, and T. M. Holsen ( 2014 ), Changing climate alters inputs and pathways of mercury deposition to forested ecosystems, Biogeochemistry, 119, 215 – 228, doi: 10.1007/s10533‐014‐9961‐6.
dc.identifier.citedreferenceBlais, J. M., S. Charpentié, F. Pick, L. E. Kimpe, A. S. Amand, and C. Regnault‐Roger ( 2006 ), Mercury, polybrominated diphenyl ether, organochlorine pesticide, and polychlorinated biphenyl concentrations in fish from lakes along an elevation transect in the French Pyrénées, Ecotoxicol. Environ. Saf., 63, 91 – 99, doi: 10.1016/j.ecoenv.2005.08.008.
dc.identifier.citedreferenceBloom, N. S., and C. J. Watras ( 1989 ), Observations of methylmercury in precipitation, Sci. Total Environ., 87–88, 199 – 207, doi: 10.1016/0048‐9697(89)90235‐0.
dc.identifier.citedreferenceBolstad, P., and J. Vose ( 2001 ), The effects of terrain position and elevation on soil C in the southern Appalachians, in Assessment Methods for Soil Carbon, edited by R. Lal, pp. 4 – 51, Lewis Publishers, Boca Raton, Fla.
dc.identifier.citedreferenceBushey, J. T., A. G. Nallana, M. R. Montesdeoca, and C. T. Driscoll ( 2008 ), Mercury dynamics of a northern hardwood canopy, Atmos. Environ., 42 ( 29 ), 6905 – 6914, doi: 10.1016/j.atmosenv.2008.05.043.
dc.identifier.citedreferenceChoi, H. D., T. J. Sharac, and T. M. Holsen ( 2008 ), Mercury deposition in the Adirondacks: A comparison between precipitation and throughfall, Atmos. Environ., 42 ( 8 ), 1818 – 1827, doi: 10.1016/j.atmosenv.2007.11.036.
dc.identifier.citedreferenceCompeau, G. C., and R. Bartha ( 1985 ), Sulfate‐reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment, Microbiology, 50 ( 2 ), 498 – 502.
dc.identifier.citedreferenceConaway, C. H., F. J. Black, P. Weiss‐Penzias, M. Gault‐Ringold, and A. R. Flegal ( 2010 ), Mercury speciation in Pacific coastal rainwater, Monterey Bay, California, Atmos. Environ., 44 ( 14 ), 1788 – 1797, doi: 10.1016/j.atmosenv.2010.01.021.
dc.identifier.citedreferenceDellinger, J., M. Dellinger, and J. S. Yauck ( 2012 ), Mercury exposures in vulnerable populations: Guidelines for fish consumption, in Mercury in the Environment: Pattern and Process, edited by M. Bank, pp. 289 – 301, Univ. of California Press, Berkeley, Calif.
dc.identifier.citedreferenceDemers, J. D., C. T. Driscoll, T. J. Fahey, and J. B. Yavitt ( 2007 ), Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA, Ecol. Appl., 17 ( 5 ), 1341 – 1351.
dc.identifier.citedreferenceDemers, J. D., J. D. Blum, and D. R. Zak ( 2013 ), Mercury isotopes in a forested ecosystem: Implications for air‐surface exchange dynamics and the global mercury cycle, Global Biogeochem. Cycles, 27, 222 – 238, doi: 10.1002/gbc.20021.
dc.identifier.citedreferenceDore, A., M. Sobik, and K. Migala ( 1999 ), Patterns of precipitation and pollutant deposition in the western Sudete mountains, Poland, Atmos. Environ., 33, 3301 – 3312, doi: 10.1016/S1352‐2310(98)00294‐5.
dc.identifier.citedreferenceDriscoll, C., and A. Sauer ( 2015 ), Methylmercury bioaccumulation within terrestrial food webs in the Adirondack Park of New York State, NYSERDA Report 16‐06.
dc.identifier.citedreferenceDriscoll, C. T., Y.‐J. Han, C. Y. Chen, D. C. Evers, K. F. Lambert, T. M. Holsen, N. C. Kamman, and R. K. Munson ( 2007 ), Mercury contamination in forest and freshwater ecosystems in the northeastern United States, Bioscience, 57 ( 1 ), 17, doi: 10.1641/B570106.
dc.identifier.citedreferenceDriscoll, C. T., R. P. Mason, H. M. Chan, D. J. Jacob, and N. Pirrone ( 2013 ), Mercury as a global pollutant: Sources, pathways, and effects, Environ. Sci. Technol., 47, 4967 – 4983.
dc.identifier.citedreferenceDukett, J. E., N. Aleksic, N. Houck, P. Snyder, P. Casson, and M. Cantwell ( 2011 ), Progress toward clean cloud water at Whiteface Mountain New York, Atmos. Environ., 45 ( 37 ), 6669 – 6673, doi: 10.1016/j.atmosenv.2011.08.070.
dc.identifier.citedreferenceEvers, D. C., Y.‐J. Han, C. T. Driscoll, N. C. Kamman, M. W. Goodale, K. F. Lambert, T. M. Holsen, C. Y. Chen, T. A. Clair, and T. Butler ( 2007 ), Biological mercury hotspots in the northeastern United States and southeastern Canada, Bioscience, 57 ( 1 ), 29 – 43, doi: 10.1641/B570107.
dc.identifier.citedreferenceFisher, L. S., and M. H. Wolfe ( 2012 ), Examination of mercury inputs by throughfall and litterfall in the Great Smoky Mountains National Park, Atmos. Environ., 47, 554 – 559, doi: 10.1016/j.atmosenv.2011.10.017.
dc.identifier.citedreferenceFitzgerald, W. F., D. R. Engstrom, R. P. Mason, and E. A. Nater ( 1998 ), The case for atmospheric mercury contamination in remote areas, Environ. Sci. Technol., 32 ( 1 ), 1 – 7, doi: 10.1021/es970284w.
dc.identifier.citedreferenceFu, X. W., X. Feng, Z. Q. Dong, R. S. Yin, J. X. Wang, Z. R. Yang, and H. Zhang ( 2010 ), Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high‐altitude mountain peak in south China, Atmos. Chem. Phys., 10 ( 5 ), 2425 – 2437, doi: 10.5194/acp‐10‐2425‐2010.
dc.identifier.citedreferenceGerson, J. R., and C. T. Driscoll ( 2016 ), Is mercury in a remote forested watershed of the Adirondack Mountains responding to recent decreases in emissions?, Environ. Sci. Technol., 50 ( 20 ), 10943 – 10950, doi: 10.1021/acs.est.6b02127.
dc.identifier.citedreferenceGilmour, C. C., E. A. Henry, and R. Mitchell ( 1992 ), Sulfate stimulation of mercury methylation in freshwater sediments, Environ. Sci. Technol., 26 ( 3 ), 2281 – 2287, doi: 10.1021/es00035a029.
dc.identifier.citedreferenceGilmour, C. C., M. Podar, A. L. Bullock, A. M. Graham, S. D. Brown, A. C. Somenahally, A. Johs, R. A. Hurt, K. L. Bailey, and D. A. Elias ( 2013 ), Mercury methylation by novel microorganisms from new environments, Environ. Sci. Technol., 47 ( 20 ), 11810 – 11820, doi: 10.1021/es403075t.
dc.identifier.citedreferenceGraydon, J. A., V. L. S. Louis, H. Hintelmann, S. E. Lindberg, K. A. Sandilands, J. W. M. Rudd, C. A. Kelly, B. D. Hall, and L. D. Mowat ( 2008 ), Long‐term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada, Environ. Sci. Technol., 42 ( 22 ), 8345 – 8351, doi: 10.1021/es801056j.
dc.identifier.citedreferenceGrigal, D. F. ( 2002 ), Inputs and outputs of mercury from terrestrial watersheds: A review, Environ. Rev., 10 ( 1 ), 1 – 39, doi: 10.1139/a01‐013.
dc.identifier.citedreferenceGrigal, D. F. ( 2003 ), Mercury sequestration in forests and peatlands: A review, J. Environ. Qual., 32, 393 – 405.
dc.identifier.citedreferenceHall, B. D., and V. L. St. Louis ( 2004 ), Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes, Environ. Sci. Technol., 38 ( 19 ), 5010 – 5021, doi: 10.1021/es049800q.
dc.identifier.citedreferenceHammerschmidt, C. R., and W. F. Fitzgerald ( 2006 ), Photodecomposition of methylmercury in an arctic Alaskan lake, Environ. Sci. Technol., 40 ( 4 ), 1212 – 1216.
dc.identifier.citedreferenceHammerschmidt, C. R., C. H. Lamborg, and W. F. Fitzgerald ( 2007 ), Aqueous phase methylation as a potential source of methylmercury in wet deposition, Atmos. Environ., 41 ( 8 ), 1663 – 1668, doi: 10.1016/j.atmosenv.2006.10.032.
dc.identifier.citedreferenceHintelmann, H., and H. T. Nguyen ( 2005 ), Extraction of methylmercury from tissue and plant samples by acid leaching, Anal. Bioanal. Chem., 381 ( 2 ), 360 – 365, doi: 10.1007/s00216‐004‐2878‐5.
dc.identifier.citedreferenceHintelmann, H., R. Harris, A. Heyes, J. P. Hurley, C. A. Kelly, D. P. Krabbenhoft, S. Lindberg, J. W. M. Rudd, K. J. Scott, and V. L. S. Louis ( 2002 ), Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study, Environ. Sci. Technol., 36 ( 23 ), 5034 – 5040, doi: 10.1021/es025572t.
dc.identifier.citedreferenceHojdová, M., J. H. Huang, K. Kalbitz, and E. Matzner ( 2007 ), Effects of throughfall and litterfall manipulation on concentrations of methylmercury and mercury in forest‐floor percolates, J. Plant Nutr. Soil Sci., 170 ( 3 ), 373 – 377, doi: 10.1002/jpln.200622023.
dc.identifier.citedreferenceHuntington, T. G., C. E. Johnson, A. H. Johnson, T. G. Siccama, and D. F. Ryan ( 1989 ), Carbon, organic matter, and bulk density relationships in a forested spodosol, Soil Sci., 148 ( 5 ), 380 – 386, doi: 10.1097/00010694-198911000-00009.
dc.identifier.citedreferenceJiskra, M., D. Saile, J. G. Wiederhold, B. Bourdon, E. Björn, and R. Kretzschmar ( 2014 ), Kinetics of Hg(II) exchange between organic ligands, goethite, and natural organic matter studied with an enriched stable isotope approach, Environ. Sci. Technol., 48 ( 22 ), 13207 – 13217, doi: 10.1021/es503483m.
dc.identifier.citedreferenceJohnson, K. B., T. A. Haines, J. S. Kahl, S. A. Norton, A. Amirbahman, and K. D. Sheehan ( 2007 ), Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine, Environ. Monit. Assess., 126, 55 – 67, doi: 10.1007/s10661‐006‐9331‐5.
dc.identifier.citedreferenceJuillerat, J. I., D. S. Ross, and M. S. Bank ( 2012 ), Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA, Environ. Toxicol. Chem., 31 ( 8 ), 1720 – 1729, doi: 10.1002/etc.1896.
dc.identifier.citedreferenceKerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates, and R. P. Mason ( 2006 ), Mercury methylation by dissimilatory iron‐reducing bacteria, Appl. Environ. Microbiol., 72 ( 12 ), 7919 – 7921, doi: 10.1128/AEM.01602‐06.
dc.identifier.citedreferenceKolka, R. K., E. A. Nater, D. F. Grigal, and E. S. Verry ( 1999 ), Atmospheric inputs of mercury and organic carbon into a forested upland/bog watershed, Water Air Soil Pollut., 113, 273 – 294, doi: 10.1023/A:1005020326683.
dc.identifier.citedreferenceLawson, S. T., T. D. Scherbatskoy, E. G. Malcolm, and G. J. Keeler ( 2003 ), Cloud water and throughfall deposition of mercury and trace elements in a high elevation spruce‐fir forest at Mt. Mansfield, Vermont, J. Environ. Monit., 5, 578 – 583, doi: 10.1039/b210125d.
dc.identifier.citedreferenceLee, Y.‐H., and A. Iverfeldt ( 1991 ), Measurement of methylmercury and mercury in run‐off, lake and rain waters, Water Air Soil Pollut., 56, 309 – 321, doi: 10.1017/CBO9781107415324.004.
dc.identifier.citedreferenceLindberg, S. E., K. H. Kim, T. P. Meyers, and J. G. Owens ( 1995 ), Micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: Tests over contaminated soils, Environ. Sci. Technol., 29, 126 – 135, doi: 10.1021/es00001a016.
dc.identifier.citedreferenceLorey, P., and C. T. Driscoll ( 1999 ), Historical trends of mercury deposition in Adirondack lakes, Environ. Sci. Technol., 33 ( 5 ), 718 – 722, doi: 10.1021/es9800277.
dc.identifier.citedreferenceLovett, G. M., and J. D. Kinsman ( 1990 ), Atmospheric pollutant deposition to high‐elevation ecosystems, Atmos. Environ., 24A ( 11 ), 2767 – 2786, doi: 10.1016/0960‐1686(90)90164‐I.
dc.identifier.citedreferenceLovett, G. M., and S. E. Lindberg ( 1984 ), Dry deposition and canopy exchange in a mixed oak Forest as determined by analysis of Throughfall, J. Appl. Ecol., 21 ( 3 ), 1013 – 1027, doi: 10.2307/2405064.
dc.identifier.citedreferenceMiller, E. K., A. J. Friedland, E. A. Arons, V. A. Mohnen, J. J. Battles, J. A. Panek, J. Kadlecek, and A. H. Johnson ( 1993 ), Atmospheric deposition to forests along an elevational gradient at Whiteface Mountain, NY, U.S.A, Atmos. Environ., 27A ( 14 ), 2121 – 2136, doi: 10.1016/0960‐1686(93)90042‐W.
dc.identifier.citedreferenceMiller, E. K., A. Vanarsdale, G. J. Keeler, A. Chalmers, L. Poissant, N. C. Kamman, and R. Brulotte ( 2005 ), Estimation and mapping of wet and dry mercury deposition across northeastern North America, Ecotoxicology, 14, 53 – 70, doi: 10.1007/s10646‐004‐6259‐9.
dc.identifier.citedreferenceMohnen, V. A. ( 1988 ), Exposure of forests to air pollutants, clouds, precipitation and climatic variables., EPA‐600/3‐89‐003, U.S. EPA, Research Triangle Park, N. C.
dc.identifier.citedreferenceMorel, F. M. M., A. M. L. Kraepiel, and M. Amyot ( 1998 ), The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543 – 566, doi: 10.1146/annurev.ecolsys.29.1.543.
dc.identifier.citedreferenceMowat, L. D., V. L. S. Louis, J. A. Graydon, and I. Lehnherr ( 2011 ), Influence of forest canopies on the deposition of methylmercury to boreal ecosystem watersheds, Environ. Sci. Technol., 45 ( 12 ), 5178 – 5185, doi: 10.1021/es104377y.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.