Show simple item record

Geomagnetically induced currents: Science, engineering, and applications readiness

dc.contributor.authorPulkkinen, A.
dc.contributor.authorBernabeu, E.
dc.contributor.authorThomson, A.
dc.contributor.authorViljanen, A.
dc.contributor.authorPirjola, R.
dc.contributor.authorBoteler, D.
dc.contributor.authorEichner, J.
dc.contributor.authorCilliers, P. J.
dc.contributor.authorWelling, D.
dc.contributor.authorSavani, N. P.
dc.contributor.authorWeigel, R. S.
dc.contributor.authorLove, J. J.
dc.contributor.authorBalch, C.
dc.contributor.authorNgwira, C. M.
dc.contributor.authorCrowley, G.
dc.contributor.authorSchultz, A.
dc.contributor.authorKataoka, R.
dc.contributor.authorAnderson, B.
dc.contributor.authorFugate, D.
dc.contributor.authorSimpson, J. J.
dc.contributor.authorMacAlester, M.
dc.date.accessioned2017-10-05T18:18:41Z
dc.date.available2018-09-13T15:12:06Zen
dc.date.issued2017-07
dc.identifier.citationPulkkinen, A.; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P. J.; Welling, D.; Savani, N. P.; Weigel, R. S.; Love, J. J.; Balch, C.; Ngwira, C. M.; Crowley, G.; Schultz, A.; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J. J.; MacAlester, M. (2017). "Geomagnetically induced currents: Science, engineering, and applications readiness." Space Weather 15(7): 828-856.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/138328
dc.description.abstractThis paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics‐based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the “impact” aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.Key PointsWe provide a broad overview of the status of the GIC fieldWe utilize the Applications Readiness Levels (ARL) concept to quantify the maturity of our GIC‐related modeling and applicationsThis paper is the high‐level report of the NASA Living With a Star GIC Working Group findings
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstatus of the field
dc.subject.othergeomagnetically induced currents
dc.subject.otherspace weather
dc.titleGeomagnetically induced currents: Science, engineering, and applications readiness
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138328/1/swe20431_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138328/2/swe20431.pdf
dc.identifier.doi10.1002/2016SW001501
dc.identifier.sourceSpace Weather
dc.identifier.citedreferencePüthe, C., C. Manoj, and A. Kuvshinov ( 2014 ), Reproducing electric field observations during magnetic storms by means of rigorous 3‐D modelling and distortion matrix co‐estimation, Earth Planets Space, 66, 162, doi: 10.1186/s40623-014-0162-2.
dc.identifier.citedreferencePulkkinen, A., S. Lindahl, A. Viljanen, and R. Pirjola ( 2005 ), Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high‐voltage power transmission system, Space Weather, 3, S08C03, doi: 10.1029/2004SW000123.
dc.identifier.citedreferencePulkkinen, A., A. Taktakishvili, D. Odstrcil and W. Jacobs ( 2009a ), Novel approach to geomagnetically induced current forecasts based on remote solar observations, Space Weather, 7, S08005, doi: 10.1029/2008SW000447.
dc.identifier.citedreferencePulkkinen, A., M. Hesse, S. Habib, L. Van der Zel, B. Damsky, F. Policelli, D. Fugate, and W. Jacobs ( 2009b ), Solar Shield: Forecasting and mitigating space weather effects on high‐voltage power transmission systems, Nat. Hazards, doi: 10.1007/s11069-009-9432-x.
dc.identifier.citedreferencePulkkinen, A., R. Kataoka, S. Watari, and M. Ichiki ( 2010 ), Modeling geomagnetically induced currents in Hokkaido, Japan, Adv. Space Res., 46, 1087 – 1093.
dc.identifier.citedreferencePulkkinen, A., E. Bernabeu, J. Eichner, C. Beggan, and A. Thomson ( 2012 ), Generation of 100‐year geomagnetically induced current scenarios, Space Weather, 10, S04003, doi: 10.1029/2011SW000750.
dc.identifier.citedreferencePulkkinen, A., et al. ( 2013 ), Community‐wide validation of geospace model ground magnetic field perturbation predictions to support model transition to operations, Space Weather, 11, 369 – 385, doi: 10.1002/swe.20056.
dc.identifier.citedreferencePulkkinen, A., E. Bernabeu, J. Eichner, A. Viljanen, and C. M. Ngwira ( 2015 ), Regional‐scale high‐latitude extreme geoelectric fields pertaining to geomagnetically induced currents, Earth Planets Space, doi: 10.1186/s40623-015-0255-6.
dc.identifier.citedreferenceRastätter, L., M. Kuznetsova, G. Toth, and A. Pulkkinen ( 2014 ), CalcDeltaB: An efficient postprocessing tool to calculate ground‐level magnetic perturbations from global magnetosphere simulations, Space Weather, 12, 553 – 565, doi: 10.1002/2014SW001083.
dc.identifier.citedreferenceRichmond, A. D. ( 1992 ), Assimilative mapping of ionospheric electrodynamics, Adv. Space Res., 12 ( 6 ), (6)69 – (6)68.
dc.identifier.citedreferenceRichmond, A. D., G. Lu, B. A. Emery, and D. J. Knipp ( 1998 ), The AMIE procedure: Prospects for space weather specification and prediction, Adv. Space Res., 22 ( 1 ), 103 – 112.
dc.identifier.citedreferenceRoyal Academy of Engineering ( 2013 ), Extreme space weather: Impacts on engineered systems and infrastructure, report published by Royal Academy of Engineering, isbn: 1-903496-95-0.
dc.identifier.citedreferenceSamimi, A., and J. Simpson ( 2016 ), Parallelization of 3‐D Global FDTD Earth‐ionosphere waveguide models at resolutions on the order of ~1 km and higher, IEEE Anten. Wireless Propag. Lett., 15, 1959 – 1962, doi: 10.1109/LAWP.2016.2545526.
dc.identifier.citedreferenceSavani, N. P., A. P. Rouillard, J. A. Davies, M. J. Owens, R. J. Forsyth, C. J. Davis, and R. A. Harrison ( 2009 ), The radial width of a coronal mass ejection between 0.1 and 0.4 AU estimated from the Heliospheric Imager on STEREO, Ann. Geophys., 27 ( 11 ), 4349 – 4358, doi: 10.5194/angeo-27-4349-2009.
dc.identifier.citedreferenceSavani, N. P., M. J. Owens, A. P. Rouillard, R. J. Forsyth, and J. A. Davies ( 2010 ), Observational evidence of a coronal mass ejection distortion directly attributable to a structured solar wind, Ap. J. Lett., 714 ( 1 ), L128 – L132, doi: 10.1088/2041-8205/714/1/L128.
dc.identifier.citedreferenceSavani, N. P., A. Vourlidas, A. Pulkkinen, T. Nieves‐Chinchilla, B. Lavraud, and M. J. Owens ( 2013 ), Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth, Space Weather, 11, 245 – 261, doi: 10.1002/swe.20038.
dc.identifier.citedreferenceSavani, N. P., A. Vourlidas, A. Szabo, M. L. Mays, I. G. Richardson, B. J. Thompson, A. Pulkkinen, R. Evans, and T. Nieves‐Chinchilla ( 2015 ), Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture, Space Weather, 13, 374 – 385, doi: 10.1002/2015SW001171.
dc.identifier.citedreferenceSchrijver, C., and S. Mitchell ( 2013 ), Disturbances in the US electric grid associated with geomagnetic activity, J. Space Weather Space Clim., 3, A19, doi: 10.1051/swsc/2013041.
dc.identifier.citedreferenceSchrijver, C. J., et al. ( 2015 ), Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS, Adv. Space Res., 55, 2745 – 2807.
dc.identifier.citedreferenceSchultz, A. ( 2010 ), EMScope: a continental scale magnetotelluric observatory and data discovery resource, Data Sci. J., 8, IGY6 – IGY20.
dc.identifier.citedreferenceShiota, D., and R. Kataoka ( 2016 ), Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO‐CME), Space Weather, 14, 56 – 75, doi: 10.1002/2015SW001308.
dc.identifier.citedreferenceSimpson, J. J. ( 2011 ), On the possibility of high‐level transient coronal mass ejection–induced ionospheric current coupling to electric power grids, J. Geophys. Res., 116, A11308, doi: 10.1029/2011JA016830.
dc.identifier.citedreferenceThernisien, A., A. Vourlidas, and R. A. Howard ( 2009 ), Forward modeling of coronal mass ejections using STEREO/SECCHI data, Sol. Phys., 256 ( 1‐2 ), 111, doi: 10.1007/s11207-009-9346-5.
dc.identifier.citedreferenceThomson, A. W. P., C. T. Gaunt, P. Cilliers, J. A. Wild, B. Opperman, L.‐A. McKinnell, P. Kotze, C. M. Ngwira, and S. I. Lotz ( 2010 ), Present day challenges in understanding the geomagnetic hazard to national power grids, J. Adv. Space Res., doi: 10.1016/j.asr.2009.11.023.
dc.identifier.citedreferenceThomson, A., S. Reay, and E. Dawson ( 2011 ), Quantifying extreme behavior in geomagnetic activity, Space Weather, 9, S10001, doi: 10.1029/2011SW000696.
dc.identifier.citedreferenceTorta, J. M., L. Serrano, J. R. Regué, A. M. Sánchez, and E. Roldán ( 2012 ), Geomagnetically induced currents in a power grid of northeastern Spain, Space Weather, 10, S06002, doi: 10.1029/2012SW000793.
dc.identifier.citedreferenceTóth, G., D. L. De Zeeuw, T. I. Gombosi, W. B. Manchester, A. J. Ridley, I. V. Sokolov, and I. I. Roussev ( 2007 ), Sun‐to‐thermosphere simulation of the 28–30 October 2003 storm with the Space Weather Modeling Framework, Space Weather, 5, S06003, doi: 10.1029/2006SW000272.
dc.identifier.citedreferenceTrichtchenko, L., and D. H. Boteler ( 2004 ), Modeling geomagnetically induced currents using geomagnetic indices and data, IEEE Trans. Plasma Sci., 32 ( 4 ), 1459 – 1467.
dc.identifier.citedreferenceUnited States of America Federal Energy Regulatory Commission ( 2013 ), Reliability standards for geomagnetic disturbances, Order 779, 16 May. [Available at https://www.ferc.gov/whats-new/comm-meet/2013/051613/E-5.pdf.]
dc.identifier.citedreferenceUniversity of Cambridge, Center for Risk Studies ( 2016 ), Helios solar storm scenario, Cambridge Centre for Risk Studies Publications.
dc.identifier.citedreferenceViljanen, A., and R. Pirjola ( 1989 ), Statistics on geomagnetically‐induced currents in the Finnish 400 kV power system based on recordings of geomagnetic variations, J. Geomagn. Geoelectr., 41, 411 – 420.
dc.identifier.citedreferenceViljanen, A., A. Pulkkinen, R. Pirjola, K. Pajunpää, P. Posio, and A. Koistinen ( 2006 ), Recordings of geomagnetically induced currents and a now casting service of the Finnish natural gas pipeline system, Space Weather, 4, S10004, doi: 10.1029/2006SW000234.
dc.identifier.citedreferenceVourlidas, A. ( 2015 ), Mission to the Sun‐Earth L5 Lagrangian point: An optimal platform for space weather research, Space Weather, 13, 197 – 201, doi: 10.1002/2015SW001173.
dc.identifier.citedreferenceWik, M., A. Viljanen, R. Pirjola, A. Pulkkinen, P. Wintoft, and H. Lundstedt ( 2008 ), Calculation of geomagnetically induced currents in the 400 kV power grid in southern Sweden, Space Weather, 6, S07005, doi: 10.1029/2007SW000343.
dc.identifier.citedreferenceWilliams, M. L., et al. ( 2010 ), Unlocking the secrets of the North American continent: An EarthScope science plan for 2010–2020, pp.  1 – 78, EarthScope.
dc.identifier.citedreferenceYang, B., G. D. Egbert, A. Kelbert, and N. M. Meqbel ( 2015 ), Three‐dimensional electrical resistivity of the north‐central USA from EarthScope long period magnetotelluric data, Earth Planet. Sci. Lett., 422, 87 – 93.
dc.identifier.citedreferenceZhang, J. J., C. Wang, and B. B. Tang ( 2012 ), Modeling geomagnetically induced electric field and currents by combining a global MHD model with a local one‐dimensional method, Space Weather, 10, S05005, doi: 10.1029/2012SW000772.
dc.identifier.citedreferenceZheng, Y., A. Pulkkinen, A. Taktakishvili, P. MacNeice, M. Hesse, and M. Kuznetsova ( 2013 ), Forecasting CMEs in an operational setting: What has been learned?, Space Weather, 11, 557 – 574, doi: 10.1002/swe.20096.
dc.identifier.citedreferenceAnderson, B., K. Takahashi, and B. Toth ( 2000 ), Sensing global Birkeland currents with iridium® engineering magnetometer data, Geophys. Res. Lett., 27, 4045 – 4048, doi: 10.1029/2000GL000094.
dc.identifier.citedreferenceBedrosian, P. A. ( 2016 ), Making it and breaking it in the Midwest: Continental assembly and rifting from modeling of EarthScope magnetotelluric data, Precambrian Res., 278, 378 – 361, doi: 10.1016/j.precamres.2016.03.009.
dc.identifier.citedreferenceBedrosian, P. A., and J. J. Love ( 2015 ), Mapping geoelectric fields during magnetic storms: Synthetic analysis of empirical United States impedances, Geophys. Res. Lett., 42, 10,160 – 10,170, doi: 10.1002/2015GL066636.
dc.identifier.citedreferenceBeggan, C. ( 2015 ), Sensitivity of geomagnetically induced currents to varying auroral electrojet and conductivity models, Earth Planets Space, 67, 24, doi: 10.1186/s40623-014-0168-9.
dc.identifier.citedreferenceBernabeu, E., et al. ( 2015 ), Harmonic load flow during geomagnetic disturbances, vol. 3, CIGRE Sci. & Eng.
dc.identifier.citedreferenceBolduc, L. ( 2002 ), GIC observations and studies in the Hydro‐Quebec power system, J. Atmos. Sol. Terr. Phys., 64, 1793.
dc.identifier.citedreferenceBolduc, L., P. Langlois, D. Boteler, and R. Pirjola ( 2000 ), A study of geoelectro‐ magnetic disturbances in Quebec, 2. Detailed analysis of a large event, IEEE Trans. Power Delivery, 15, 272.
dc.identifier.citedreferenceBorovsky, J. E., and M. H. Denton ( 2006 ), Differences between CME‐driven storms and CIR‐driven storms, J. Geophys. Res., 111, A07S08, doi: 10.1029/2005JA011447.
dc.identifier.citedreferenceBoteler, D., ( 1997 ), Distributed source transmission line theory for electromagnetic induction studies, in Supplement of the Proceedings of the 12th International Zurich Symposium and Technical Exhibition on Electromagnetic Compatibility, pp.  401 – 408.
dc.identifier.citedreferenceBoteler, D., and E. Bradley ( 2016 ), On the interaction of power transformers and geomagnetically induced currents, IEEE Trans. Power Delivery, 1 ( 5 ), 2188 – 2195.
dc.identifier.citedreferenceBoteler, D., and R. Pirjola ( 2017 ), Modelling geomagnetically induced currents, Space Weather, 15, 258 – 276, doi: 10.1002/2016SW001499.
dc.identifier.citedreferenceBoteler, D. H. ( 2001 ), Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards, 23, 101 – 120.
dc.identifier.citedreferenceBoteler, D. H., and R. J. Pirjola ( 2014 ), Comparison of methods for modelling geomagnetically induced currents, Ann. Geophys., 32, 1177 – 1187, doi: 10.5194/angeo-32-1177-2014.
dc.identifier.citedreferenceBoteler, D. H., R. J. Pirjola, and H. Nevanlinna ( 1998 ), The effects of geomagnetic disturbances on electrical systems at the Earth’s surface, Adv. Space Res., 22, 17.
dc.identifier.citedreferenceCabinet Office ( 2015 ), National Risk Register of Civil Emergencies. [Available at https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/419549/20150331_2015‐NRR‐WA_Final.pdf.]
dc.identifier.citedreferenceCagniard, L. ( 1953 ), Basic theory of the magneto‐telluric method of geophysical prospecting, Geophysics, 18 ( 3 ), 605.
dc.identifier.citedreferenceCardona,  O. D., M. K. van Aalst, J. Birkmann, M. Fordham, G. McGregor, R. Perez, R. S. Pulwarty, E. L. F. Schipper, and B. T. Sinh ( 2012 ), Determinants of risk: Exposure and vulnerability, in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC), edited by C. B. Field, pp. 65 – 108, Cambridge Univ. Press, Cambridge, U. K., and New York.
dc.identifier.citedreferenceCarter, B. A., E. Yizengaw, R. Pradipta, A. J. Halford, R. Norman, and K. Zhang ( 2015 ), Interplanetary shocks and the resulting geomagnetically induced currents at the equator, Geophys. Res. Lett., 42, 6554 – 6559, doi: 10.1002/2015GL065060.
dc.identifier.citedreferenceElectric Power Research Institute ( 2011 ), Sunburst Network for Geomagnetic Currents, EPRI Product Abstract, Product ID 1023278. [Available at http://www.epri.com/abstracts/Pages/ProductAbstract.aspx?ProductId=000000000001023278.]
dc.identifier.citedreferenceFederal Energy Regulatory Commission ( 2015 ), Reliability standard for transmission system planned performance for geomagnetic disturbance events, 18 CFR Part 40, Docket No. RM15‐11‐000.
dc.identifier.citedreferenceFernberg, P. ( 2012 ), One‐dimensional Earth resistivity models for selected areas of continental United States and Alaska, pp. 1–190, EPRI Technical Update 1026430, Palo Alto, Calif.
dc.identifier.citedreferenceForbes, K. F., and O. C. St. Cyr ( 2008 ), Solar activity and economic fundamentals: Evidence from 12 geographically disparate power grids, Space Weather, 6, S10003, doi: 10.1029/2007SW000350.
dc.identifier.citedreferenceForbes, K. F., and O. C. St. Cyr ( 2010 ), An anatomy of space weather’s electricity market impact: Case of the PJM power grid and the performance of its 500 kV transformers, Space Weather, 8, S09004, doi: 10.1029/2009SW000498.
dc.identifier.citedreferenceGanushkina, N. Y., et al. ( 2015 ), Defining and resolving current systems in geospace, Ann. Geophys., 33, 1369 – 1402, doi: 10.5194/angeo-33-1369-2015.
dc.identifier.citedreferenceGaunt, C. T. ( 2014 ), Reducing uncertainty–responses for electricity utilities to severe solar storms, J. Weather Space Clim., 4, A01.
dc.identifier.citedreferenceGaunt, C. T., and G. Coetzee ( 2007 ), Transformer failures in regions incorrectly considered to have low GIC‐risk, in Power Tech, 2007 IEEE Lausanne: Proceedings, pp.  807 – 812, Inst. of Elec. and Elec. Eng., Piscataway, N. J.
dc.identifier.citedreferenceGlocer, A., et al. ( 2016 ), Community‐wide validation of geospace model local K ‐index predictions to support model transition to operations, Space Weather, 14, 469 – 480, doi: 10.1002/2016SW001387.
dc.identifier.citedreferenceHuttunen, K. E. J., S. P. Kilpua, A. Pulkkinen, A. Viljanen, and E. Tanskanen ( 2008 ), Solar wind drivers of large geomagnetically induced currents during the solar cycle 23, Space Weather, 6, S10002, doi: 10.1029/2007SW000374.
dc.identifier.citedreferenceKappenman, J. G. ( 2003 ), Storm sudden commencement events and the associated geomagnetically induced current risks to ground‐based systems at low‐latitude and midlatitude locations, Space Weather, 1 ( 3 ), 1016, doi: 10.1029/2003SW000009.
dc.identifier.citedreferenceKataoka, R., and C. Ngwira ( 2016 ), Extreme geomagnetically induced currents, Prog. Earth Planet. Sci., 3, 23, doi: 10.1186/s40645-016-0101.
dc.identifier.citedreferenceKataoka, R., and A. Pulkkinen ( 2008 ), Geomagnetically induced currents during intense storms driven by coronal mass ejections and corotating interacting regions, J. Geophys. Res., 113, A03S12, doi: 10.1029/2007JA012487.
dc.identifier.citedreferenceKelbert, A., C. Balch, A. A. Pulkkinen, G. D. Egbert, J. J. Love, E. J. Rigler and I. Fujii ( 2017 ), Methodology for time‐domain estimation of storm-time geoelectric fields using the 3D magnetotelluric response tensors, Space Weather, 15, doi: 10.1002/2017SW001594.
dc.identifier.citedreferenceKnipp, D. ( 2015 ), Forward to space weather collection on geomagnetically induced currents: Commentary and research, Space Weather, 13, 742 – 746, doi: 10.1002/2015SW001318.
dc.identifier.citedreferenceLehtinen, M., and R. Pirjola ( 1985 ), Currents produced in earthed conductor networks by geomagnetically‐induced electric fields, Ann. Geophys., 3 ( 4 ), 479.
dc.identifier.citedreferenceLionello, R., C. Downs, J. A. Linker, T. Torok, P. Riley, and Z. Mikic ( 2013 ), Magnetohydrodynamic simulations of interplanetary coronal mass ejections, Astrophys. J., 777 ( 76 ), 11, doi: 10.1088/0004-637X/777/1/76.
dc.identifier.citedreferenceLiu, C. M., L. G. Liu, and R. Pirjola ( 2009 ), Geomagnetically induced currents in the high‐voltage power grid in China, IEEE Trans. Power Delivery, 24, 4.
dc.identifier.citedreferenceLiu, Y., et al. ( 2014 ), Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections, Nat. Commun., 5, 3481, doi: 10.1038/ncomms4481.
dc.identifier.citedreferenceLove, J. J., and C. A. Finn ( 2011 ), The USGS geomagnetism program and its role in space weather monitoring, Space Weather, 9, S07001, doi: 10.1029/2011SW000684.
dc.identifier.citedreferenceLove, J. J., E. J. Rigler, A. Pulkkinen, and C. C. Balch ( 2014 ), Magnetic storms and induction hazards, Eos Trans. AGU, 95 ( 48 ), 445 – 446, doi: 10.1002/2014EO480001.
dc.identifier.citedreferenceLove, J. J., P. Coisson, and A. Pulkkinen ( 2016a ), Global statistical maps of extreme‐event magnetic observatory 1‐min first differences in horizontal intensity, Geophys. Res. Lett., 43, 4126 – 4135, doi: 10.1002/2016GL068664.
dc.identifier.citedreferenceLove, J. J., et al. ( 2016b ), Geoelectric hazard maps for the continental United States, Geophys. Res. Lett., 43, 9415 – 9424, doi: 10.1002/2016GL070469.
dc.identifier.citedreferenceMarshall, R. A., E. A. Smith, M. J. Francis, C. L. Waters, and M. D. Sciffer ( 2011 ), A preliminary risk assessment of the Australian region power network to space weather, Space Weather, 9, S10004, doi: 10.1029/2011SW000685.
dc.identifier.citedreferenceMarti, L., A. Rezaei‐Zare, and A. Narang ( 2013 ), Simulation of transformer hotspot heating due to geomagnetically induced currents, IEEE Trans. Power Delivery, 28 ( 1 ), 320 – 327.
dc.identifier.citedreferenceMarti, L., C. Yiu, A. Rezaei‐Zare, and D. Boteler ( 2014 ), Simulation of geomagnetically induced currents with piecewise layered‐earth models, IEEE Trans. Power Delivery, 29 ( 4 ), 1886 – 1893.
dc.identifier.citedreferenceMcKay, A. J. ( 2004 ), Geoelectric fields and geomagnetically induced currents in the United Kingdom, PhD thesis, 237 pp., Univ. of Edinburgh. [Available at http://www.era.lib.ed.ac.uk/1842/639.]
dc.identifier.citedreferenceMeier, A. V. ( 2006 ), Electric Power Systems: A Conceptual Introduction, John Wiley, Hoboken, N. J.
dc.identifier.citedreferenceMillward, G., D. Biesecker, V. Pizzo, and C. A. de Koning ( 2013 ), An operational software tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA‐Enlil heliospheric model, Space Weather, 11, 57 – 68, doi: 10.1002/swe.20024.
dc.identifier.citedreferenceMolinski, T. ( 2002 ), Why utilities respect geomagnetically induced currents, J. Atmos. Sol. Terr. Phys., 64, 1765 – 1778.
dc.identifier.citedreferenceNational Research Council ( 2008 ), Severe Space Weather Events: Understanding Societal and Economic Impacts—A Workshop Report, Natl. Acad. Press, Washington, D. C.
dc.identifier.citedreferenceNational Science and Technology Council ( 2015a ), National Space Weather Strategy, Executive Office of the President (EOP), USA. [Available at https://www. whitehouse.gov/sites/default/files/microsites/ostp/final_nationalspaceweatherstrategy_20151028.pdf.]
dc.identifier.citedreferenceNational Science and Technology Council ( 2015b ), National Space Weather Action Plan, Executive Office of the President (EOP), USA. [Available at https://www.whitehouse.gov/sites/default/files/microsites/ostp/final_nationalspaceweatheractionplan_20151028.pdf.]
dc.identifier.citedreferenceNgwira, C., A. Pulkkinen, M. Kuznetsova, and A. Glocer ( 2014 ), Modeling extreme “Carrington‐type” space weather events using three‐dimensional global MHD simulations, J. Geophys. Res. Space Physics, 119, 4456 – 4474, doi: 10.1002/2013JA019661.
dc.identifier.citedreferenceNgwira, C., A. Pulkkinen, E. Bernabeu, J. Eichner, A. Viljanen, and G. Crowley ( 2015 ), Characteristics of extreme geoelectric fields and their possible causes: Localized peak enhancements, Geophys. Res. Lett., 42, 6916 – 6921, doi: 10.1002/2015GL065061.
dc.identifier.citedreferenceNgwira C. M., A. Pulkkinen, L.‐A. McKinnell, and P. J. Cilliers ( 2008 ), Improved modelling of geomagnetically induced currents in the South African power network, Space Weather, 6, S11004, doi: 10.1029/2008SW000408.
dc.identifier.citedreferenceNikitina, L., L. Trichtchenko, and D. H. Boteler ( 2016 ), Assessment of extreme values in geomagnetic and geoelectric field variations for Canada, Space Weather, 14, 481 – 494, doi: 10.1002/2016SW001386.
dc.identifier.citedreferenceNorth American Electric Reliability Corporation ( 2012 ), 2012 Special Reliability Assessment Interim Report: Effects of geomagnetic disturbances on the bulk power system, February 2012.
dc.identifier.citedreferenceNorth American Electric Reliability Corporation ( 2013 ), White Paper Supporting Network Applicability of EOP‐010‐1, 2013. [PDF available at http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.]
dc.identifier.citedreferenceNorth American Electric Reliability Corporation ( 2016a ), Benchmark Geomagnetic Disturbance Event Description, Project 2013‐03 GMD Mitigation Standards Drafting Team, May 2016. [PDF available at http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.]
dc.identifier.citedreferenceNorth American Electric Reliability Corporation ( 2016b ), Transformer Thermal Impact Assessment white paper, Project 2013‐03 GMD Mitigation Standards Drafting Team, May 2016. [PDF available at http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.]
dc.identifier.citedreferenceOyedokun, D. ( 2015 ), Geomagnetically induced currents (GICs) in large power systems including transformer time response, PhD Thesis, Univ. of Cape Town.
dc.identifier.citedreferencePirjola, R. ( 2013 ), Practical model applicable to investigating the coast effect on the geoelectric field in connection with studies of geomagnetically induced currents, Adv. Appl. Phys., 1 ( 1 ), 9 – 28.
dc.identifier.citedreferencePizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil ( 2011 ), Wang‐Sheeley‐Arge‐Enlil cone model transitions to operations, Space Weather, 9, S03004, doi: 10.1029/2011SW000663.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.