Show simple item record

Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer

dc.contributor.authorIngersoll, Andrew P.
dc.contributor.authorAdumitroaie, Virgil
dc.contributor.authorAllison, Michael D.
dc.contributor.authorAtreya, Sushil
dc.contributor.authorBellotti, Amadeo A.
dc.contributor.authorBolton, Scott J.
dc.contributor.authorBrown, Shannon T.
dc.contributor.authorGulkis, Samuel
dc.contributor.authorJanssen, Michael A.
dc.contributor.authorLevin, Steven M.
dc.contributor.authorLi, Cheng
dc.contributor.authorLi, Liming
dc.contributor.authorLunine, Jonathan I.
dc.contributor.authorOrton, Glenn S.
dc.contributor.authorOyafuso, Fabiano A.
dc.contributor.authorSteffes, Paul G.
dc.date.accessioned2017-10-05T18:18:46Z
dc.date.available2018-11-01T16:42:00Zen
dc.date.issued2017-08-16
dc.identifier.citationIngersoll, Andrew P.; Adumitroaie, Virgil; Allison, Michael D.; Atreya, Sushil; Bellotti, Amadeo A.; Bolton, Scott J.; Brown, Shannon T.; Gulkis, Samuel; Janssen, Michael A.; Levin, Steven M.; Li, Cheng; Li, Liming; Lunine, Jonathan I.; Orton, Glenn S.; Oyafuso, Fabiano A.; Steffes, Paul G. (2017). "Implications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer." Geophysical Research Letters 44(15): 7676-7685.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/138332
dc.description.abstractThe latitude‐altitude map of ammonia mixing ratio shows an ammonia‐rich zone at 0–5°N, with mixing ratios of 320–340 ppm, extending from 40–60 bars up to the ammonia cloud base at 0.7 bars. Ammonia‐poor air occupies a belt from 5–20°N. We argue that downdrafts as well as updrafts are needed in the 0–5°N zone to balance the upward ammonia flux. Outside the 0–20°N region, the belt‐zone signature is weaker. At latitudes out to ±40°, there is an ammonia‐rich layer from cloud base down to 2 bars that we argue is caused by falling precipitation. Below, there is an ammonia‐poor layer with a minimum at 6 bars. Unanswered questions include how the ammonia‐poor layer is maintained, why the belt‐zone structure is barely evident in the ammonia distribution outside 0–20°N, and how the internal heat is transported through the ammonia‐poor layer to the ammonia cloud base.Key PointsThe altitude‐latitude map of Jupiter’s ammonia reveals unexpected evidence of large‐scale circulation down at least to the 50‐bar levelA narrow equatorial band is the only region where ammonia‐rich air from below the 50‐bar level can reach the ammonia cloud at 0.7 barsAt higher latitudes the ammonia‐rich air appears to be blocked by a layer of ammonia‐poor air between 3 and 15 barsPlain Language SummaryJupiter is a fluid planet. It has no solid continents to stabilize the weather. Scientists have wondered what the weather is like below the clouds because it might explain why storms last for decades or hundreds of years on Jupiter. The Juno spacecraft is the first chance we have had to take a look beneath the clouds, and this is the first analysis of the Juno data. The surprise is that, deep down, Jupiter’s weather looks a lot like Earth’s, with ammonia gas taking the place of water vapor. There is a band of high humidity at the equator and bands of low humidity on either side of the equator, like Earth’s tropical and subtropical bands. What is different is that the bands go much deeper than anyone expected and this is all taking place on a planet without an ocean or a solid surface.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otheratmosphere
dc.subject.othergiant planet
dc.subject.othermicrowave
dc.subject.otherJuno
dc.subject.otherJupiter
dc.subject.otherdynamics
dc.titleImplications of the ammonia distribution on Jupiter from 1 to 100 bars as measured by the Juno microwave radiometer
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138332/1/grl56217_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138332/2/grl56217.pdf
dc.identifier.doi10.1002/2017GL074277
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceLimaye, S. S. ( 1986 ), Jupiter: New estimates of the mean zonal flow at the cloud level, Icarus, 65 ( 2–3 ), 335 – 352, doi: 10.1016/0019‐1035(86)90142‐9.
dc.identifier.citedreferenceDyudina, U. A., A. D. Del Genio, A. P. Ingersoll, C. C. Porco, R. A. West, A. R. Vasavada, and J. M. Barbara ( 2004 ), Lightning on Jupiter observed in the H‐alpha line by the Cassini imaging science subsystem, Icarus, 172 ( 1 ), 24 – 36, doi: 10.1016/j.icarus.2004.07.014.
dc.identifier.citedreferenceGierasch, P. J., B. J. Conrath, and J. A. Magalhaes ( 1986 ), Zonal mean properties of Jupiter upper troposphere from Voyager infrared observations, Icarus, 67 ( 3 ), 456 – 483.
dc.identifier.citedreferenceGlatzmaier, G. A., M. Evonuk, and T. M. Rogers ( 2009 ), Differential rotation in giant planets maintained by density‐stratified turbulent convection, Geophys. Astrophys. Fluid Dyn., 103 ( 1 ), 31 – 51, doi: 10.1080/03091920802221245.
dc.identifier.citedreferenceGuillot, T. ( 1995 ), Condensation of methane, ammonia, and water and the inhibition of convection in giant planets, Science, 269 ( 5231 ), 1697 – 1699, doi: 10.1126/science.7569896.
dc.identifier.citedreferenceGuillot, T., D. Gautier, G. Chabrier, and B. Mosser ( 1994 ), Are giant planets fully convective?, Icarus, 112, 337 – 353.
dc.identifier.citedreferenceHeimpel, M., T. Gastine, and J. Wicht ( 2016 ), Simulation of deep‐seated zonal jets and shallow vortices in gas giant atmospheres, Nat. Geosci., 9 ( 1 ), 19 – 24, doi: 10.1038/ngeo2601.
dc.identifier.citedreferenceHess, S. L., and H. A. Panofsky ( 1951 ), The atmospheres of the other planets, in Compendium of Meteorology, pp. 391 – 400, Am. Meteorol. Soc., Boston, Mass.
dc.identifier.citedreferenceHolton, J. R., and G. J. Hakim ( 2013 ), An Introduction to Dynamic Meteorology, vol. 88, 5th ed., Academic Press, Waltham, Mass.
dc.identifier.citedreferenceIngersoll, A. P. ( 1990 ), Atmospheric dynamics of the outer planets, Science, 248 ( 4953 ), 308 – 315.
dc.identifier.citedreferenceIngersoll, A. P., and J. N. Cuzzi ( 1969 ), Dynamics of Jupiter’s cloud bands, J. Atmos. Sci., 26, 981 – 985, doi: 10.1175/1520‐0469(1969)026<0981:dojcb>2.0.co;2.
dc.identifier.citedreferenceIngersoll, A. P., R. F. Beebe, J. L. Mitchell, G. W. Garneau, G. M. Yagi, and J.‐P. Muller ( 1981 ), Interactions of eddies and mean zonal flow on Jupiter as inferred from Voyager images, J. Geophys. Res., 86, 8733 – 8743, doi: 10.1029/JA086iA10p08733.
dc.identifier.citedreferenceIngersoll, A. P., P. J. Gierasch, D. Banfield, A. R. Vasavada, and the Galileo Imaging Team ( 2000 ), Moist convection as an energy source for the large‐scale motions in Jupiter’s atmosphere, Nature, 403 ( 6770 ), 630 – 632, doi: 10.1038/35001021.
dc.identifier.citedreferenceJanssen, M. A., et al. ( 2017 ), Microwave radiometer for the Juno mission to Jupiter, Space Sci. Rev., doi: 10.1007/s11204‐017‐0349‐5.
dc.identifier.citedreferenceKaspi, Y., G. R. Flierl, and A. P. Showman ( 2009 ), The deep wind structure of the giant planets: Results from an anelastic general circulation model, Icarus, 202 ( 2 ), 525 – 542, doi: 10.1016/j.icarus.2009.03.026.
dc.identifier.citedreferenceLeconte, J., F. Selsis, F. Hersant, and T. Guillot ( 2017 ), Condensation‐inhibited convection in hydrogen‐rich atmospheres, Astron. Astrophys., 598, A98, doi: 10.1051/0004‐6361/201629140.
dc.identifier.citedreferenceLi, C., and A. P. Ingersoll ( 2015 ), Moist convection in hydrogen atmospheres and the frequency of Saturn’s giant storms, Nat. Geosci., 8 ( 5 ), 398 – 403, doi: 10.1038/ngeo2405.
dc.identifier.citedreferenceLi, C., et al. ( 2017 ), The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data, Geophys. Res. Lett., 44, 5317 – 5325, doi: 10.1002/2017GL073159.
dc.identifier.citedreferenceLi, L., A. P. Ingersoll, A. R. Vasavada, C. C. Porco, A. D. Del Genio, and S. P. Ewald ( 2004 ), Life cycles of spots on Jupiter from Cassini images, Icarus, 172 ( 1 ), 9 – 23, doi: 10.1016/j.icarus.2003.10.015.
dc.identifier.citedreferenceLi, L. M., A. P. Ingersoll, and X. L. Huang ( 2006 ), Interaction of moist convection with zonal jets on Jupiter and Saturn, Icarus, 180 ( 1 ), 113 – 123, doi: 10.1016/j.icarus.2005.08.016.
dc.identifier.citedreferenceLittle, B., et al. ( 1999 ), Galileo images of lightning on Jupiter, Icarus, 142 ( 2 ), 306 – 323.
dc.identifier.citedreferenceMarcus, P. S. ( 1993 ), Jupiter’s Great Red Spot and other vortices, Annu. Rev. Astron. Astrophys., 31, 523 – 573.
dc.identifier.citedreferenceOrton, G. S., et al. ( 2017 ), Multiple‐wavelength sensing of Jupiter during the Juno mission’s first perijove passage, Geophys. Res. Lett., 44, 4607 – 4614, doi: 10.1002/2017GL073019.
dc.identifier.citedreferencePeixoto, J. P., and A. H. Oort ( 1996 ), The climate of relative humidity in the atmosphere, J. Clim., 9 ( 12 ), 3443 – 3463.
dc.identifier.citedreferencePirraglia, J. A., B. J. Conrath, M. D. Allison, and P. J. Gierasch ( 1981 ), Thermal structure and dynamics of Saturn and Jupiter, Nature, 292 ( 5825 ), 677 – 679, doi: 10.1038/292677a0.
dc.identifier.citedreferencePlumb, R. A. ( 2002 ), Stratospheric transport, J. Meteorol. Soc. Jpn., 80 ( 4B ), 793 – 809.
dc.identifier.citedreferencePorco, C. C., et al. ( 2003 ), Cassini imaging of Jupiter’s atmosphere, satellites, and rings, Science, 299 ( 5612 ), 1541 – 1547.
dc.identifier.citedreferenceRead, P. L., P. J. Gierasch, B. J. Conrath, A. Simon‐Miller, T. Fouchet, and Y. Hiro Yamazaki ( 2006 ), Mapping potential‐vorticity dynamics on Jupiter. I. Zonal‐mean circulation from Cassini and Voyager 1 data, Q. J. R. Meteorol. Soc., 132, 1577 – 1603, doi: 10.1256/qj.05.34.
dc.identifier.citedreferenceRoberts, P. H. ( 1968 ), On the thermal instability of a rotating‐fluid sphere containing heat sources, Phil. Trans. R. Soc. London Ser. A, 263 ( 1136 ), 93 – 117.
dc.identifier.citedreferenceSalyk, C., A. P. Ingersoll, J. Lorre, A. Vasavada, and A. D. Del Genio ( 2006 ), Interaction between eddies and mean flow in Jupiter’s atmosphere: Analysis of Cassini imaging data, Icarus, 185 ( 2 ), 430 – 442, doi: 10.1016/j.icarus.2006.08.007.
dc.identifier.citedreferenceSeifert, A. ( 2008 ), On the parameterization of evaporation of raindrops as simulated by a one‐dimensional rainshaft model, J. Atmos. Sci., 65 ( 11 ), 3608 – 3619, doi: 10.1175/2008jas2586.1.
dc.identifier.citedreferenceShowman, A. P. ( 2007 ), Numerical simulations of forced shallow‐water turbulence: Effects of moist convection on the large‐scale circulation of Jupiter and Saturn, J. Atmos. Sci., 64, 3132 – 3157, doi: 10.1175/JAS4007.1.
dc.identifier.citedreferenceShowman, A. P., and I. de Pater ( 2005 ), Dynamical implications of Jupiter’s tropospheric ammonia abundance, Icarus, 174 ( 1 ), 192 – 204, doi: 10.1016/j.icarus.2004.10.004.
dc.identifier.citedreferenceSromovsky, L. A., A. D. Collard, P. M. Fry, G. S. Orton, M. T. Lemmon, M. G. Tomasko, and R. S. Freedman ( 1998 ), Galileo probe measurements of thermal and solar radiation fluxes in the Jovian atmosphere, J. Geophys. Res., 103, 22,929 – 22,977, doi: 10.1029/98JE01048.
dc.identifier.citedreferenceThomson, S. I., and M. E. McIntyre ( 2016 ), Jupiter’s unearthly jets: A new turbulent model exhibiting statistical steadiness without large‐scale dissipation, J. Atmos. Sci., 73 ( 3 ), 1119 – 1141, doi: 10.1175/jas‐d‐14‐0370.1.
dc.identifier.citedreferenceYoung, R. E. ( 2003 ), The Galileo probe: How it has changed our understanding of Jupiter, New Astron. Rev., 47 ( 1 ), 1 – 51, doi: 10.1016/s1387‐6473(02)00272‐5.
dc.identifier.citedreferenceAndrews, D. G., J. R. Holton, and C. B. Leovy ( 1987 ), Middle Atmosphere Dynamics, Academic Press, New York.
dc.identifier.citedreferenceAsplund, M., N. Grevesse, A. J. Sauval, and P. Scott ( 2009 ), The chemical composition of the Sun, Annu. Rev. Astron. Astrophys., 47, 481 – 522, doi: 10.1146/annurev.astro.46.060407.145222.
dc.identifier.citedreferenceAtreya, S. K., and A. S. Wong ( 2005 ), Coupled clouds and chemistry of the giant planets—A case for multiprobes, Space Sci. Rev., 116 ( 1–2 ), 121 – 136, doi: 10.1007/S11214‐005‐1951‐5.
dc.identifier.citedreferenceAurnou, J., M. Heimpel, L. Allen, E. King, and J. Wicht ( 2008 ), Convective heat transfer and the pattern of thermal emission on the gas giants, Geophys. J. Int., 173 ( 3 ), 793 – 801, doi: 10.1111/j.1365‐246X.2008.03764.x.
dc.identifier.citedreferenceBarcilon, A., and P. Gierasch ( 1970 ), A moist, Hadley cell model for Jupiter’s cloud bands, J. Atmos. Sci., 27 ( 4 ), 550 – 560, doi: 10.1175/1520–0469(1970)027<0550:amhcmf>2.0.co;2.
dc.identifier.citedreferenceBolton, S. J., et al. ( 2017 ), Jupiter’s interior and deep atmosphere: The first close polar pass with the Juno spacecraft, Science, 356, 821 – 825, doi: 10.1126/science.aal2108.
dc.identifier.citedreferenceBusse, F. H. ( 1970 ), Differential rotation in stellar convection zones, Astrophys. J., 159 ( 2 ), 629, doi: 10.1086/150337.
dc.identifier.citedreferenceChristensen, U. R. ( 2002 ), Zonal flow driven by strongly supercritical convection in rotating spherical shells, J. Fluid Mech., 470, 115 – 133, doi: 10.1017/s0022112002002008.
dc.identifier.citedreferenceConrath, B. J., P. J. Gierasch, and N. Nath ( 1981 ), Stability of zonal flows on Jupiter, Icarus, 48 ( 2 ), 256 – 282, doi: 10.1016/0019‐1035(81)90108‐1.
dc.identifier.citedreferencede Pater, I. ( 1986 ), Jupiter zone‐belt structure at radio wavelengths.2. Comparison of observations with model atmosphere calculations, Icarus, 68 ( 2 ), 344 – 365, doi: 10.1016/0019‐1035(86)90027‐8.
dc.identifier.citedreferencede Pater, I., D. Dunn, P. Romani, and K. Zahnle ( 2001 ), Reconciling Galileo probe data and ground‐based radio observations of ammonia on Jupiter, Icarus, 149 ( 1 ), 66 – 78, doi: 10.1006/icar.2000.6527.
dc.identifier.citedreferencede Pater, I., R. J. Sault, B. Butler, D. DeBoer, and M. H. Wong ( 2016 ), Peering through Jupiter’s clouds with radio spectral imaging, Science, 352 ( 6290 ), 1198 – 1201, doi: 10.1126/science.aaf2210.
dc.identifier.citedreferenceDritschel, D. G., and M. E. McIntyre ( 2008 ), Multiple jets as PV staircases: The Phillips effect and the resilience of eddy‐transport barriers, J. Atmos. Sci., 65, 855 – 874.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.