Show simple item record

Distance‐based time series classification approach for task recognition with application in surgical robot autonomy

dc.contributor.authorFard, Mahtab J.
dc.contributor.authorPandya, Abhilash K.
dc.contributor.authorChinnam, Ratna B.
dc.contributor.authorKlein, Michael D.
dc.contributor.authorEllis, R. Darin
dc.date.accessioned2017-10-05T18:18:47Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-09
dc.identifier.citationFard, Mahtab J.; Pandya, Abhilash K.; Chinnam, Ratna B.; Klein, Michael D.; Ellis, R. Darin (2017). "Distance‐based time series classification approach for task recognition with application in surgical robot autonomy." The International Journal of Medical Robotics and Computer Assisted Surgery 13(3): n/a-n/a.
dc.identifier.issn1478-5951
dc.identifier.issn1478-596X
dc.identifier.urihttps://hdl.handle.net/2027.42/138333
dc.description.abstractBackgroundRobotic‐assisted surgery allows surgeons to perform many types of complex operations with greater precision than is possible with conventional surgery. Despite these advantages, in current systems, a surgeon should communicate with the device directly and manually. To allow the robot to adjust parameters such as camera position, the system needs to know automatically what task the surgeon is performing.MethodsA distance‐based time series classification framework has been developed which measures dynamic time warping distance between temporal trajectory data of robot arms and classifies surgical tasks and gestures using a k‐nearest neighbor algorithm.ResultsResults on real robotic surgery data show that the proposed framework outperformed state‐of‐the‐art methods by up to 9% across three tasks and by 8% across gestures.ConclusionThe proposed framework is robust and accurate. Therefore, it can be used to develop adaptive control systems that will be more responsive to surgeons’ needs by identifying next movements of the surgeon. Copyright © 2016 John Wiley & Sons, Ltd.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherk‐nearest neighbor
dc.subject.otherdistance‐based classification
dc.subject.othertask and gesture recognition
dc.subject.otherrobotic surgery
dc.subject.otherautomatic camera control
dc.subject.othertime series classification
dc.subject.otherdynamic time warping
dc.titleDistance‐based time series classification approach for task recognition with application in surgical robot autonomy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelSurgery and Anesthesiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138333/1/rcs1766.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138333/2/rcs1766_am.pdf
dc.identifier.doi10.1002/rcs.1766
dc.identifier.sourceThe International Journal of Medical Robotics and Computer Assisted Surgery
dc.identifier.citedreferenceLeong JJH, Nicolaou M, Atallah L, et al. HMM assessment of quality of movement trajectory in laparoscopic surgery. Comput Aided Surg 2007; 12 ( 6 ): 335 – 346.
dc.identifier.citedreferenceKassahun Y, Yu B, Tibebu AT, et al. Surgical robotics beyond enhanced dexterity instrumentation: a survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 2016; 11 ( 4 ): 553 – 568.
dc.identifier.citedreferenceRosen J, Hannaford B, Richards CG, Sinanan MN. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. IEEE Trans Biomed Eng 2001; 48 ( 5 ): 579 – 591.
dc.identifier.citedreferenceBlum T, Padoy N, Feussner H, Navab N. Modeling and online recognition of surgical phases using Hidden Markov Models. Med Image Comput Comput Assist Interv 2008; 11 ( 2 ): 627 – 635.
dc.identifier.citedreferenceLalys F, Riffaud L, Bouget D, Jannin P. A framework for the recognition of high‐level surgical tasks from video images for cataract surgeries. IEEE Trans Biomed Eng 2012; 59 ( 4 ): 966 – 976.
dc.identifier.citedreferenceVaradarajan B, Reiley C, Lin H, Khudanpur S, Hager GD. Data‐derived models for segmentation with application to surgical assessment and training. Med Image Comput Comput Assist Interv 2009; 12 ( 1 ): 426 – 434.
dc.identifier.citedreferenceLin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation: detection and segmentation of robot‐assisted surgical motions. Comput Aided Surg 2006; 11 ( 5 ): 220 – 230.
dc.identifier.citedreferenceHaro BB, Zappella L, Vidal R. Surgical gesture classification from video data. Proceeding Int Conf Med Image Comput Comput Interv (MICCAI ). 2012; 15: 34–41.
dc.identifier.citedreferenceZappella L, Béjar B, Hager GD, Vidal R. Surgical gesture classification from video and kinematic data. Med Image Anal 2013; 17 ( 7 ): 732 – 745.
dc.identifier.citedreferenceRosen J, Solazzo M, Hannaford B, Sinanan M. Task decomposition of laparoscopic surgery for objective evaluation of surgical residents’ learning curve using hidden Markov model. Comput Aided Surg 2002; 7 ( 1 ): 49 – 61.
dc.identifier.citedreferenceDosis A, Belle F, Gillies D, et al. Laparoscopic task recognition using hidden markov model. Stud Health Technol Inform 2005; 111: 115 – 122.
dc.identifier.citedreferenceReiley CE, Lin HC, Varadarajan B, et al. Automatic recognition of surgical motions using statistical modeling for capturing variability. Stud Health Technol Inform 2008; 132 ( 1 ): 396 – 401.
dc.identifier.citedreferenceReiley CE, Hager GD. Task versus subtask surgical skill evaluation of robotic minimally invasive surgery. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2009; 5761 LNCS(PART 1): 435–442.
dc.identifier.citedreferenceTao L, Elhamifar E. Sparse hidden markov models for surgical gesture classification and skill evaluation. Inf Process Comput Interv Berlin/Heidelberg; 2012; 167–77.
dc.identifier.citedreferenceXing Z, Pei J, Keogh E. A brief survey on sequence classification. ACM SIGKDD Explor Newsl 2010; 12 ( 1 ): 40.
dc.identifier.citedreferenceFu TC. A review on time series data mining. Eng Appl Artif Intell 2011; 24 ( 1 ): 164 – 181.
dc.identifier.citedreferenceDing H, Trajcevski G, Scheuermann P. Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 2008; 1 ( 2 ): 1542 – 1552.
dc.identifier.citedreferenceXi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA. Fast time series classification using numerosity reduction. Proceedings of 23rd International Conference on Machine Learning, 2006; 1033–1040.
dc.identifier.citedreferenceRakthanmanon T, Campana B, Mueen A, et al. Searching and mining trillions of time series subsequences under dynamic time warping. Proc 18th ACM SIGKDD Int Conf Knowl Discov Data Min. 2012; 262–270.
dc.identifier.citedreferenceForestier G, Lalys F, Riffaud L, et al. Classification of surgical processes using dynamic time warping. J Biomed Inform Elsevier Inc 2012; 45 ( 2 ): 255 – 264.
dc.identifier.citedreferenceBatista GE a P a, Wang X, Keogh EJ. A complexity‐invariant distance measure for time series. SIAM Int Conf Data Min 2011: 699 – 710.
dc.identifier.citedreferenceGao Y, Vedula SS, Reiley CE, et al. JHU‐ISI gesture and skill assessment working set ( JIGSAWS ): a surgical activity dataset for human motion modeling. Model Monit Comput Assist Interv 2014: 1 – 10.
dc.identifier.citedreferenceLin JF, Kuli D. Segmenting human motion for automated rehabilitation exercise analysis. IEEE Trans Neural Syst Rehabil Eng 2012; 22 ( 1 ): 2881 – 2884.
dc.identifier.citedreferenceVlachos M, Kollios G, Gunopulos D. Discovering similar multidimensional trajectories. Proceedings of 18th International Conference on Data Engineering, 2002; 673–684.
dc.identifier.citedreferenceFard MJ, Ameri S, Chinnam RB, Ellis RD. Soft boundary approach for unsupervised gesture segmentation in robotic‐assisted surgery. IEEE Robot Autom Lett IEEE 2017; 2 ( 1 ): 171 – 178. doi: 10.1109/LRA.2016.2585303.
dc.identifier.citedreferenceLanfranco AR, Castellanos AE, Desai JP, Meyers WC. Robotic surgery. Ann Surg 2004; 239 ( 1 ): 14 – 21.
dc.identifier.citedreferenceCuschieri A. Whither minimal access surgery: tribulations and expectations. Am J Surg 1995; 169 ( 1 ): 9 – 19.
dc.identifier.citedreferenceKing BW, Reisner L a, Pandya AK, et al. Towards an autonomous robot for camera control during laparoscopic surgery. J Laparoendosc Adv Surg Tech A 2013; 23 ( 12 ): 1027 – 1030.
dc.identifier.citedreferenceEllis RD, Munaco AJ, Reisner LA, et al. Task analysis of laparoscopic camera control schemes. Int J Med Robot Comput Assist Surg MRCAS 2015. doi: 10.1002/rcs.1716.
dc.identifier.citedreferencePandya AK, Reisner LA, King BW, et al. A review of camera viewpoint automation in robotic and laparoscopic surgery. Robotics 2014; 3: 310 – 329.
dc.identifier.citedreferenceGuthart GS, Salisbury JK. The Intuitive telesurgery system: overview and application. Proc 2000 ICRA Millenn Conf IEEE Int Conf Robot Autom Symp Proc 2000; 1: 618–621.
dc.identifier.citedreferenceLalys F, Jannin P. Surgical process modelling: a review. Int J Comput Assist Radiol Surg 2014; 9 ( 3 ): 495 – 511.
dc.identifier.citedreferenceJahanbani Fard M. Computational modeling approaches for task analysis in robotic‐assisted surgery; 2016.
dc.identifier.citedreferenceBerndt DJ, Clifford J. Finding patterns in time series: a dynamic programming approach. Advances in knowledge discovery and data mining. Am Assoc Artif Intell 1996: 229 – 248.
dc.identifier.citedreferenceCover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967; 13 ( 1 ): 21 – 27.
dc.identifier.citedreferenceFried GM, Feldman LS, Vassiliou MC, et al. Proving the value of simulation in laparoscopic surgery. Ann Surg 2004; 240 ( 3 ): 518 – 528.
dc.identifier.citedreferenceBouarfa L, Jonker PP, Dankelman J. Discovery of high‐level tasks in the operating room. J Biomed Inform 2011; 44 ( 3 ): 455 – 462.
dc.identifier.citedreferenceReiley CE, Lin HC, Yuh DD, Hager GD. Review of methods for objective surgical skill evaluation. Surg Endosc 2011; 25 ( 2 ): 356 – 366.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.