Show simple item record

Bioinspired, Sizeâ Tunable Selfâ Assembly of Polymerâ Lipid Bilayer Nanodiscs

dc.contributor.authorRavula, Thirupathi
dc.contributor.authorRamadugu, Sudheer Kumar
dc.contributor.authorDi mauro, Giacomo
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2017-10-05T18:19:02Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-09-11
dc.identifier.citationRavula, Thirupathi; Ramadugu, Sudheer Kumar; Di mauro, Giacomo ; Ramamoorthy, Ayyalusamy (2017). "Bioinspired, Sizeâ Tunable Selfâ Assembly of Polymerâ Lipid Bilayer Nanodiscs." Angewandte Chemie International Edition 56(38): 11466-11470.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/138344
dc.description.abstractPolymerâ based nanodiscs are valuable tools in biomedical research that can offer a detergentâ free solubilization of membrane proteins maintaining their native lipid environment. Herein, we introduce a novel ca. 1.6â kDa SMAâ based polymer with styrene:maleic acid moieties that can form nanodiscs containing a planar lipid bilayer which are useful to reconstitute membrane proteins for structural and functional studies. The physicochemical properties and the mechanism of formation of polymerâ based nanodiscs are characterized by light scattering, NMR, FTâ IR, and TEM. A remarkable feature is that nanodiscs of different sizes, from nanometer to subâ micrometer diameter, can be produced by varying the lipidâ toâ polymer ratio. The smallâ size nanodiscs (up to ca. 30â nm diameter) can be used for solution NMR spectroscopy studies whereas the magneticâ alignment of macroâ nanodiscs (diameter of > ca. 40â nm) can be exploited for solidâ state NMR studies on membrane proteins.Discrete bilayers: Lipid bilayer nanodiscs of different size are formed by using modified styrene maleic acid coâ polymer. The smallâ size nanodiscs (up to ca. 30â nm diameter) can be used for solution NMR spectroscopy studies, whereas the magnetic alignment of largeâ size nanodiscs (or macroâ nanodiscs with a diameter of >40â nm) can be exploited for solidâ state NMR studies on membrane proteins.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpolymers
dc.subject.otherlipids
dc.subject.othermembrane proteins
dc.subject.othernanodiscs
dc.subject.otherNMR spectroscopy
dc.titleBioinspired, Sizeâ Tunable Selfâ Assembly of Polymerâ Lipid Bilayer Nanodiscs
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138344/1/anie201705569.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138344/2/anie201705569_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138344/3/anie201705569-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/anie.201705569
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceR. S. Prosser, S. A. Hunt, J. A. DiNatale, R. R. Vold, J. Am. Chem. Soc. 1996, 118, 269 â 270.
dc.identifier.citedreferenceI. G. Denisov, S. G. Sligar, Chem. Rev. 2017, 117, 4669 â 4713.
dc.identifier.citedreferenceT. H. Bayburt, Y. V. Grinkova, S. G. Sligar, Nano Lett. 2002, 2, 853 â 856.
dc.identifier.citedreferenceT. H. Bayburt, Y. V. Grinkova, S. G. Sligar, Arch. Biochem. Biophys. 2006, 450, 215 â 222.
dc.identifier.citedreferenceF. Hagn, M. Etzkorn, T. Raschle, G. Wagner, J. Am. Chem. Soc. 2013, 135, 1919 â 1925.
dc.identifier.citedreferenceM. Zhang, R. Huang, R. Ackermann, S. C. Im, L. Waskell, A. Schwendeman, A. Ramamoorthy, Angew. Chem. Int. Ed. 2016, 55, 4497 â 4499; Angew. Chem. 2016, 128, 4573 â 4575; H. Kondo, K. Ikeda, M. Nakano, Colloids Surf. B 2016, 146, 423 â 430; S. H. Park, S. Berkamp, G. A. Cook, M. K. Chan, H. Viadiu, S. J. Opella, Biochemistry 2011, 50, 8983 â 8985.
dc.identifier.citedreferenceM. Orwick-Rydmark, J. E. Lovett, A. Graziadei, L. Lindholm, M. R. Hicks, A. Watts, Nano Lett. 2012, 12, 4687 â 4692; A. O. Oluwole, B. Danielczak, A. Meister, J. O. Babalola, C. Vargas, S. Keller, Angew. Chem. Int. Ed. 2017, 56, 1919 â 1924; Angew. Chem. 2017, 129, 1946 â 1951.
dc.identifier.citedreferenceT. K. Ritchie, Y. V. Grinkova, T. H. Bayburt, I. G. Denisov, J. K. Zolnerciks, W. M. Atkins, S. G. Sligar, Methods Enzymol. 2009, 464, 211 â 231.
dc.identifier.citedreferenceJ. M. Dörr, M. C. Koorengevel, M. Schafer, A. V. Prokofyev, S. Scheidelaar, E. A. vanâ derâ Cruijsen, T. R. Dafforn, M. Baldus, J. A. Killian, Proc. Natl. Acad. Sci. USA 2014, 111, 18607 â 18612.
dc.identifier.citedreferenceS. C. Lee, T. J. Knowles, V. L. Postis, M. Jamshad, R. A. Parslow, Y. P. Lin, A. Goldman, P. Sridhar, M. Overduin, S. P. Muench, T. R. Dafforn, Nat. Protoc. 2016, 11, 1149 â 1162.
dc.identifier.citedreferenceM. C. Orwick, P. J. Judge, J. Procek, L. Lindholm, A. Graziadei, A. Engel, G. Grobner, A. Watts, Angew. Chem. Int. Ed. 2012, 51, 4653 â 4657; Angew. Chem. 2012, 124, 4731 â 4735.
dc.identifier.citedreferenceJ. M. Dörr, S. Scheidelaar, M. C. Koorengevel, J. J. Dominguez, M. Schafer, C. A. vanâ Walree, J. A. Killian, Eur. Biophys. J. 2016, 45, 3 â 21.
dc.identifier.citedreferenceS. Scheidelaar, M. C. Koorengevel, C. A. vanâ Walree, J. J. Dominguez, J. M. Dorr, J. A. Killian, Biophys. J. 2016, 111, 1974 â 1986.
dc.identifier.citedreferenceC. R. Sanders, J. H. Prestegard, Biophys. J. 1990, 58, 447 â 460; U. H. N. Dürr, M. Gildenberg, A. Ramamoorthy, Chem. Rev. 2012, 112, 6054 â 6074.
dc.identifier.citedreferenceR. S. Prosser, J. S. Hwang, R. R. Vold, Biophys. J. 1998, 74, 2405 â 2418.
dc.identifier.citedreferenceC. R. Sanders, B. J. Hare, K. P. Howard, J. H. Prestegard, Prog. Nucl. Magn. Reson. Spectrosc. 1994, 26, 421 â 444; A. A. Deâ Angelis, A. A. Nevzorov, S. H. Park, S. C. Howell, A. A. Mrse, S. J. Opella, J. Am. Chem. Soc. 2004, 126, 15340 â 15341.
dc.identifier.citedreferenceF. M. Marassi, S. J. Opella, J. Magn. Reson. 2000, 144, 150 â 155; J. Wang, J. Denny, C. Tian, S. Kim, Y. Mo, F. Kovacs, Z. Song, K. Nishimura, Z. Gan, R. Fu, J. R. Quine, T. A. Cross, J. Magn. Reson. 2000, 144, 162 â 167.
dc.identifier.citedreferenceC. H. Wu, A. Ramamoorthy, S. J. Opella, J. Magn. Reson. Ser. A 1994, 109, 270 â 272; A. Ramamoorthy, C. H. Wu, S. J. Opella, J. Magn. Reson. 1999, 140, 131 â 140; A. Ramamoorthy, Y. Wei, D.-K. Lee, Annu. Rep. NMR Spectrosc. 2004, 52, 1 â 52.
dc.identifier.citedreferenceU. H. Dürr, K. Yamamoto, S. C. Im, L. Waskell, A. Ramamoorthy, J. Am. Chem. Soc. 2007, 128, 6670 â 6671.
dc.identifier.citedreferenceK. Pervushin, R. Riek, G. Wider, K. Wüthrich, Proc. Natl. Acad. Sci. USA 1997, 94, 12366 â 12371.
dc.identifier.citedreferenceS. Ahuja, N. Jahr, S. C. Im, S. Vivekanandan, N. Popovych, S. V. Leâ Clair, R. Huang, R. Soong, J. Xu, K. Yamamoto, R. P. Nanga, A. Bridges, L. Waskell, A. Ramamoorthy, J. Biol. Chem. 2013, 288, 22080 â 22095.
dc.identifier.citedreferenceL. S. Brown, V. Ladizhansky, Protein Sci. 2015, 24, 1333 â 1346; B. J. Wylie, M. P. Bhate, A. E. McDermott, Proc. Natl. Acad. Sci. USA 2014, 111, 185 â 190; M. Kaplan, C. Pinto, K. Houben, M. Baldus, Q. Rev. Biophys. 2016, 49, e 15.
dc.identifier.citedreferenceR. Phillips, T. Ursell, P. Wiggins, P. Sens, Nature 2009, 459, 379 â 385.
dc.identifier.citedreferenceM. L. Nasr, D. Baptista, M. Strauss, Z. J. Sun, S. Grigoriu, S. Huser, A. Pluckthun, F. Hagn, T. Walz, J. M. Hogle, G. Wagner, Nat. Methods 2017, 14, 49 â 52.
dc.identifier.citedreferenceI. G. Denisov, S. G. Sligar, Nat. Struct. Mol. Biol. 2016, 23, 481 â 486.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.