Show simple item record

Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada

dc.contributor.authorThomas, J. L.
dc.contributor.authorPolashenski, C. M.
dc.contributor.authorSoja, A. J.
dc.contributor.authorMarelle, L.
dc.contributor.authorCasey, K. A.
dc.contributor.authorChoi, H. D.
dc.contributor.authorRaut, J.‐c.
dc.contributor.authorWiedinmyer, C.
dc.contributor.authorEmmons, L. K.
dc.contributor.authorFast, J. D.
dc.contributor.authorPelon, J.
dc.contributor.authorLaw, K. S.
dc.contributor.authorFlanner, M. G.
dc.contributor.authorDibb, J. E.
dc.date.accessioned2017-10-05T18:19:20Z
dc.date.available2018-11-01T16:42:00Zen
dc.date.issued2017-08-16
dc.identifier.citationThomas, J. L.; Polashenski, C. M.; Soja, A. J.; Marelle, L.; Casey, K. A.; Choi, H. D.; Raut, J.‐c. ; Wiedinmyer, C.; Emmons, L. K.; Fast, J. D.; Pelon, J.; Law, K. S.; Flanner, M. G.; Dibb, J. E. (2017). "Quantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada." Geophysical Research Letters 44(15): 7965-7974.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/138356
dc.description.abstractBlack carbon (BC) concentrations observed in 22 snowpits sampled in the northwest sector of the Greenland ice sheet in April 2014 have allowed us to identify a strong and widespread BC aerosol deposition event, which was dated to have accumulated in the pits from two snow storms between 27 July and 2 August 2013. This event comprises a significant portion (57% on average across all pits) of total BC deposition over 10 months (July 2013 to April 2014). Here we link this deposition event to forest fires burning in Canada during summer 2013 using modeling and remote sensing tools. Aerosols were detected by both the Cloudâ Aerosol Lidar with Orthogonal Polarization (on board CALIPSO) and Moderate Resolution Imaging Spectroradiometer (Aqua) instruments during transport between Canada and Greenland. We use highâ resolution regional chemical transport modeling (WRFâ Chem) combined with highâ resolution fire emissions (FINNv1.5) to study aerosol emissions, transport, and deposition during this event. The model captures the timing of the BC deposition event and shows that fires in Canada were the main source of deposited BC. However, the model underpredicts BC deposition compared to measurements at all sites by a factor of 2â 100. Underprediction of modeled BC deposition originates from uncertainties in fire emissions and model treatment of wet removal of aerosols. Improvements in model descriptions of precipitation scavenging and emissions from wildfires are needed to correctly predict deposition, which is critical for determining the climate impacts of aerosols that originate from fires.Key PointsAn event in late July/early August deposited 57% of black carbon that accumulated in northwest Greenland from July 2013 to April 2014Satellite observations and modeling indicate that the origin of this event is emissions from forest fires burning in CanadaChemical transport modeling predicts the event at the right time but underpredicts black carbon deposition compared to observations
dc.publisherWiley Periodicals, Inc.
dc.publisherAMAP
dc.subject.otherblack carbon
dc.subject.otherfires
dc.subject.otherdeposition
dc.titleQuantifying black carbon deposition over the Greenland ice sheet from forest fires in Canada
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138356/1/grl56097.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138356/2/grl56097_am.pdf
dc.identifier.doi10.1002/2017GL073701
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceRoiger, A. et al., ( 2015 ), Quantifying emerging local anthropogenic emissions in the Arctic region: The ACCESS aircraft campaign experiment, Bull. Am. Meteorol. Soc., 96 ( 3 ), 441 â 460.
dc.identifier.citedreferenceFlannigan, M. D., B. J. Stocks, and M. G. Weber ( 2006 ), Fire regimes and climatic change in Canadian forests, in Fire and Climatic Change in Temperate Ecosystems of the Western Americas, vol. 160, edited by T. T.   Veblen et al., pp. 97 â 119, Springer, New York.
dc.identifier.citedreferenceFreitas, S. R., K. M. Longo, R. Chatfield, D. Latham, M. Silva Dias, M. Andreae, E. Prins, J. Santos, R. Gielow, and J. Carvalho Jr ( 2007 ), Including the subâ grid scale plume rise of vegetation fires in low resolution atmospheric transport models, Atmos. Chem. Phys., 7 ( 13 ), 3385 â 3398.
dc.identifier.citedreferenceGiglio, L., W. Schroeder, and C. O. Justice ( 2016 ), The collection 6 MODIS active fire detection algorithm and fire products, Remote Sens. Environ., 178, 31 â 41.
dc.identifier.citedreferenceGrell, G., S. R. Freitas, M. Stuefer, and J. Fast ( 2011 ), Inclusion of biomass burning in WRFâ Chem: Impact of wildfires on weather forecasts, Atmos. Chem. Phys., 11 ( 11 ), 5289 â 5303.
dc.identifier.citedreferenceGrell, G. A., S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder ( 2005 ), Fully coupled â onlineâ chemistry within the WRF model, Atmos. Environ., 39 ( 37 ), 6957 â 6975.
dc.identifier.citedreferenceHansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. U.S.A., 101 ( 2 ), 423 â 428.
dc.identifier.citedreferenceKaufman, Y. J., C. O. Justice, L. P. Flynn, J. D. Kendall, E. M. Prins, L. Giglio, D. E. Ward, W. P. Menzel, and A. W. Setzer ( 1998 ), Potential global fire monitoring from EOSâ MODIS, J. Geophys. Res., 103 ( D24 ), 32,215 â 32,238.
dc.identifier.citedreferenceLaw, K. S. et al., ( 2014 ), Arctic air pollution: New insights from POLARCATâ IPY, Bull. Am. Meteorol. Soc., 95 ( 12 ), 1873 â 1895.
dc.identifier.citedreferenceLegrand, M. et al., ( 2016 ), Boreal fire records in Northern Hemisphere ice cores: A review, Clim. Past, 12 ( 10 ), 2033 â 2059.
dc.identifier.citedreferenceLyapustin, A. et al., ( 2014 ), Scientific impact of MODIS C5 calibration degradation and C6+ improvements, Atmos. Meas. Tech., 7 ( 12 ), 4353 â 4365.
dc.identifier.citedreferenceMcConnell, J. R., R. Edwards, G. L. Kok, M. G. Flanner, C. S. Zender, E. S. Saltzman, J. R. Banta, D. R. Pasteris, M. M. Carter, and J. D. Kahl ( 2007 ), 20thâ century industrial black carbon emissions altered Arctic climate forcing, Science, 317 ( 5843 ), 1381 â 1384.
dc.identifier.citedreferenceMénégoz, M., G. Krinner, Y. Balkanski, A. Cozic, O. Boucher, and P. Ciais ( 2013 ), Boreal and temperate snow cover variations induced by black carbon emissions in the middle of the 21st century, Cryosphere, 7 ( 2 ), 537 â 554.
dc.identifier.citedreferenceMonks, S. A., and S. R. Arnold ( 2015 ), Multiâ model study of chemical and physical controls on transport of anthropogenic and biomass burning pollution to the Arctic, Atmos. Chem. Phys., 15 ( 6 ), 3575 â 3603.
dc.identifier.citedreferencePetters, M. D. et al., ( 2009 ), Ice nuclei emissions from biomass burning, J. Geophys. Res., 114, D07209, doi: 10.1029/2008JD011532.
dc.identifier.citedreferencePlatnick, S., P. Hubanks, K. Meyer, and M. D. King ( 2015 ), MODIS Atmosphere L3 Monthly Product (08_L3), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, Greenbelt, Md.
dc.identifier.citedreferencePolashenski, C. M., J. E. Dibb, M. G. Flanner, J. Y. Chen, Z. R. Courville, A. M. Lai, J. J. Schauer, M. M. Shafer, and M. Bergin ( 2015 ), Neither dust nor black carbon causing apparent albedo decline in Greenland’s dry snow zone: Implications for MODIS C5 surface reflectance, Geophys. Res. Lett., 42, 9319 â 9327, doi: 10.1002/2015GL065912.
dc.identifier.citedreferenceSchwarz, J. P., B. Weinzierl, B. H. Samset, M. Dollner, K. Heimerl, M. Z. Markovic, A. E. Perring, and L. Ziemba ( 2017 ), Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability, Geophys. Res. Lett., 44, 1132 â 1140, doi: 10.1002/2016GL071241.
dc.identifier.citedreferenceSessions, W., H. Fuelberg, R. Kahn, and D. Winker ( 2011 ), An investigation of methods for injecting emissions from boreal wildfires using WRFâ Chem during ARCTAS, Atmos. Chem. Phys., 11 ( 12 ), 5719 â 5744.
dc.identifier.citedreferenceShen, Z., J. Liu, L. W. Horowitz, D. K. Henze, S. Fan, H. Levy II, D. L. Mauzerall, J.â T. Lin, and S. Tao ( 2014 ), Analysis of transpacific transport of black carbon during HIPPOâ 3: Implications for black carbon aging, Atmos. Chem. Phys., 14 ( 12 ), 6315 â 6327.
dc.identifier.citedreferenceSoja, A. J., N. M. Tchebakova, N. H. French, M. D. Flannigan, H. H. Shugart, B. J. Stocks, A. I. Sukhinin, E. Parfenova, F. S. Chapin, and P. W. Stackhouse ( 2007 ), Climateâ induced boreal forest change: Predictions versus current observations, Global Planet. Change, 56 ( 3 ), 274 â 296.
dc.identifier.citedreferenceStocks, B. J. et al., ( 1998 ), Climate change and forest fire potential in Russian and Canadian boreal forests, Clim. Change, 38 ( 1 ), 1 â 13.
dc.identifier.citedreferenceTedesco, M., J. Box, J. Cappelen, X. Fettweis, T. Mote, R. van de Wal, C. Smeets, and J. Wahr ( 2014 ), Greenland ice sheet, NOAA Arctic Rep. Card, p.  22.
dc.identifier.citedreferenceTedesco, M., S. Doherty, X. Fettweis, P. Alexander, J. Jeyaratnam, and J. Stroeve ( 2016 ), The darkening of the Greenland ice sheet: Trends, drivers, and projections (1981â 2100), Cryosphere, 10 ( 2 ), 477 â 496.
dc.identifier.citedreferenceTurquety, S., L. Menut, B. Bessagnet, A. Anav, N. Viovy, F. Maignan, and M. Wooster ( 2014 ), APIFLAME v1.0: Highâ resolution fire emission model and application to the Euroâ Mediterranean region, Geosci. Model Dev., 7 ( 2 ), 587 â 612.
dc.identifier.citedreferenceWiedinmyer, C., B. Quayle, C. Geron, A. Belote, D. McKenzie, X. Zhang, S. O’Neill, and K. K. Wynne ( 2006 ), Estimating emissions from fires in North America for air quality modeling, Atmos. Environ., 40 ( 19 ), 3419 â 3432.
dc.identifier.citedreferenceWiedinmyer, C., S. Akagi, R. J. Yokelson, L. Emmons, J. Alâ Saadi, J. Orlando, and A. Soja ( 2011 ), The Fire INventory from NCAR (FINN): A high resolution global model to estimate the emissions from open burning, Geosci. Model Dev., 4, 625 â 641.
dc.identifier.citedreferenceWinker, D. M., M. A. Vaughan, A. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young ( 2009 ), Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic Technol., 26 ( 11 ), 2310 â 2323.
dc.identifier.citedreferenceWiscombe, W. J., and S. G. Warren ( 1980 ), A model for the spectral albedo of snow. I: Pure snow, J. Atmos. Sci., 37 ( 12 ), 2712 â 2733.
dc.identifier.citedreferenceWooster, M. J., G. Roberts, G. L. W. Perry, and Y. J. Kaufman ( 2005 ), Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release, J. Geophys. Res., 110, D24311, doi: 10.1029/2005JD006318.
dc.identifier.citedreferenceZaveri, R. A., R. C. Easter, J. D. Fast, and L. K. Peters ( 2008 ), Model for Simulating Aerosol Interactions and Chemistry (MOSAIC), J. Geophys. Res., 113, D13204, doi: 10.1029/2007JD008782.
dc.identifier.citedreferenceAbdulâ Razzak, H., and S. J. Ghan ( 2000 ), A parameterization of aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105 ( D5 ), 6837 â 6844.
dc.identifier.citedreferenceAbdulâ Razzak, H., and S. J. Ghan ( 2002 ), A parameterization of aerosol activation: 3. Sectional representation, J. Geophys. Res., 107 ( D3 ), 4026, doi: 10.1029/2001JD000483.
dc.identifier.citedreferenceAMAP ( 2011 ), The Impact of Black Carbon on Arctic Climate, AMAP, Oslo, Norway.
dc.identifier.citedreferenceAMAP ( 2015 ), AMAP Assessment 2015: Black Carbon and Ozone as Arctic Climate Forcers, AMAP, Oslo, Norway.
dc.identifier.citedreferenceBerg, L., M. Shrivastava, R. Easter, J. Fast, E. Chapman, Y. Liu, and R. Ferrare ( 2015 ), A new WRFâ Chem treatment for studying regionalâ scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli, Geosci. Model Dev., 8 ( 2 ), 409 â 429.
dc.identifier.citedreferenceBond, T. C. et al., ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 â 5552, doi: 10.1002/jgrd.50171.
dc.identifier.citedreferenceBrioude, J. et al., ( 2013 ), The Lagrangian particle dispersion model FLEXPARTâ WRF version 3.1, Geosci. Model Dev., 6 ( 6 ), 1889 â 1904.
dc.identifier.citedreferenceChapman, E. G., W. Gustafson Jr., R. C. Easter, J. C. Barnard, S. J. Ghan, M. S. Pekour, and J. D. Fast ( 2009 ), Coupling aerosolâ cloudâ radiative processes in the WRFâ Chem model: Investigating the radiative impact of elevated point sources, Atmos. Chem. Phys., 9 ( 3 ), 945 â 964.
dc.identifier.citedreferenceCozic, J., S. Mertes, B. Verheggen, D. J. Cziczo, S. Gallavardin, S. Walter, U. Baltensperger, and E. Weingartner ( 2008 ), Black carbon enrichment in atmospheric ice particle residuals observed in lower tropospheric mixed phase clouds, J. Geophys. Res. Atmos., 113, D15209, doi: 10.1029/2007JD009266.
dc.identifier.citedreferenceDeMott, P., Y. Chen, S. Kreidenweis, D. Rogers, and D. E. Sherman ( 1999 ), Ice formation by black carbon particles, Geophys. Res. Lett., 26 ( 16 ), 2429 â 2432.
dc.identifier.citedreferenceDeMott, P. J., M. D. Petters, A. J. Prenni, C. M. Carrico, S. M. Kreidenweis, J. L. Collett, and H. Moosmüller ( 2009 ), Ice nucleation behavior of biomass combustion particles at cirrus temperatures, J. Geophys. Res., 114, D16205, doi: 10.1029/2009JD012036.
dc.identifier.citedreferenceEckhardt et al., ( 2015 ), Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multiâ model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15 ( 16 ), 9413 â 9433.
dc.identifier.citedreferenceEmmons, L. K. et al., ( 2015 ), The POLARCAT Model Intercomparison Project (POLMIP): Overview and evaluation with observations, Atmos. Chem. Phys., 15 ( 12 ), 6721 â 6744.
dc.identifier.citedreferenceFast, J. D., W. I. Gustafson, R. C. Easter, R. A. Zaveri, J. C. Barnard, E. G. Chapman, G. A. Grell, and S. E. Peckham ( 2006 ), Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorologyâ chemistryâ aerosol model, J. Geophys. Res., 111, D21305, doi: 10.1029/2005JD006721.
dc.identifier.citedreferenceFlanner, M. G. ( 2013 ), Arctic climate sensitivity to local black carbon, J. Geophys. Res. Atmos., 118, 1840 â 1851, doi: 10.1002/jgrd.50176.
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Presentâ day climate forcing and response from black carbon in snow, J. Geophys. Res. Atmos., 112, D11202, doi: 10.1029/2006JD008003.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.