Show simple item record

Progranulin regulates neurogenesis in the developing vertebrate retina

dc.contributor.authorWalsh, Caroline E.
dc.contributor.authorHitchcock, Peter F.
dc.date.accessioned2017-10-05T18:19:24Z
dc.date.available2018-12-03T15:34:03Zen
dc.date.issued2017-09
dc.identifier.citationWalsh, Caroline E.; Hitchcock, Peter F. (2017). "Progranulin regulates neurogenesis in the developing vertebrate retina." Developmental Neurobiology 77(9): 1114-1129.
dc.identifier.issn1932-8451
dc.identifier.issn1932-846X
dc.identifier.urihttps://hdl.handle.net/2027.42/138360
dc.description.abstractWe evaluated the expression and function of the microglia‐specific growth factor, Progranulin‐a (Pgrn‐a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn‐a is expressed throughout the forebrain, but by 48 hpf pgrn‐a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn‐a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed—retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn‐a knockdown. Depleting Pgrn‐a results in a significant lengthening of the cell cycle. These data suggest that Pgrn‐a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn‐a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114–1129, 2017
dc.publisherWiley Periodicals, Inc.
dc.subject.otherzebrafish
dc.subject.othercell cycle
dc.subject.otherCNS development
dc.subject.otherretinal development
dc.subject.otherProgranulin‐a
dc.titleProgranulin regulates neurogenesis in the developing vertebrate retina
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNeurosciences
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138360/1/dneu22499.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138360/2/dneu22499_am.pdf
dc.identifier.doi10.1002/dneu.22499
dc.identifier.sourceDevelopmental Neurobiology
dc.identifier.citedreferenceRobu ME, Larson JD, Nasevicius A, Beiraghi S, Brenner C, Farber SA, Ekker SC. 2007. p53 activation by knockdown technologies. PLoS Genet 3: e78.
dc.identifier.citedreferenceRyan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M, Minotti S, et al. 2009. Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci 10: 130.
dc.identifier.citedreferenceSchmitt EA, Dowling JE. 1994. Early eye morphogenesis in the zebrafish, Brachydanio rerio. J Comp Neurol 344: 532 – 542.
dc.identifier.citedreferenceSchmitt EA, Dowling JE. 1996. Comparison of topographical patterns of ganglion and photoreceptor cell differentiation in the retina of the zebrafish, Danio rerio. J Comp Neurol 371: 222 – 234.
dc.identifier.citedreferenceSchmitt EA, Dowling JE. 1999. Early retinal development in the zebrafish, Danio rerio: Light and electron microscopic analyses. J Comp Neurol 404: 515 – 536.
dc.identifier.citedreferenceSchulte‐Merker S, Stainier DYR. 2014. Out with the old, in with the new: Reassessing morpholino knockdowns in light of genome editing technology. Development 141: 3103 – 3104.
dc.identifier.citedreferenceSchwarz JM, Bilbo SD. 2014. Microglia and Neurodevelopment: Programming of Cognition throughout the Lifespan. Chapter 15. The Wiley‐Blackwell Handbook of Psychoneuroimunology. Kusnecov AW, Anisman H, Eds. John Wiley & Sons, Ltd.
dc.identifier.citedreferenceShiau CE, Monk KR, Joo W, Talbot WS. 2013. An anti‐inflammatory NOD‐like receptor is required for microglia development. Cell Rep 5: 1342 – 1352.
dc.identifier.citedreferenceSolchenberger B, Russell C, Kremmer E, Haass C, Schmid B. 2015. Granulin knock out zebrafish lack frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis pathology. PLoS One 10: e0118956.
dc.identifier.citedreferenceSwamydas M, Nguyen D, Allen LD, Eddy J, Dréau D. 2011. Progranulin stimulated by LPA promotes the migration of aggressive breast cancer cells. Cell Commun Adhes 18: 119 – 130.
dc.identifier.citedreferenceSwinnen N, Smolders S, Avila A, Notelaers K. 2013. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61: 150 – 163.
dc.identifier.citedreferenceTangkeangsirisin W, Serrero G. 2004. PC cell‐derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis 25: 1587 – 1592.
dc.identifier.citedreferenceTaylor SM, Alvarez‐Delfin K, Saade CJ, Thomas JL, Thummel R, Fadool JM, Hitchcock PF. 2015. The bHLH transcription factor NeuroD governs photoreceptor genesis and regeneration through delta‐notch signaling. Invest Ophthalmol Vis Sci 56: 7496 – 7515.
dc.identifier.citedreferenceVan Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, Carmeliet P, et al. 2008. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol 181: 37 – 41.
dc.identifier.citedreferenceVerney C, Monier A, Fallet‐Bianco C, Gressens P. 2010. Early microglial colonization of the human forebrain and possible involvement in periventricular white‐matter injury of preterm infants. J Anat 217: 436 – 448.
dc.identifier.citedreferenceWang M, Li G, Yin J, Lin T, Zhang J. 2011. Progranulin overexpression predicts overall survival in patients with glioblastoma. Med Oncol 29: 2423 – 2431.
dc.identifier.citedreferenceXu J, Wang T, Wu Y, Jin W, Wen Z. 2015a. Microglial colonization of developing zebrafish midbrain is promoted by apoptotic neurons and lysophosphatidylcholine. Dev Cell 38: 214 – 222.
dc.identifier.citedreferenceXu J, Zhu L, He S, Wu Y, Jin W, Yu T, Qu JY, et al. 2015b. Temporal‐spatial resolution fate mapping reveals distinct origins for embryonic and adult microglia in zebrafish. Dev Cell 34: 632 – 641.
dc.identifier.citedreferenceYoun BS, Bang SI, Kloting N, Park JW, Lee N, Oh JE, Pi KB, et al. 2009. Serum progranulin concentrations may be associated with macrophage infiltration into omental adipose tissue. Diabetes 58: 627 – 636.
dc.identifier.citedreferenceZhang H, Serrero G. 1998. Inhibition of tumorigenicity of the teratoma PC cell line by transfection with antisense cDNA for PC cell‐derived growth factor (PCDGF, epithelin/granulin precursor). Proc Natl Acad Sci USA 95: 14202 – 14207.
dc.identifier.citedreferenceZhou J, Gao G, Crabb JW, Serrero G. 1993. Purification of an autocrine growth factor homologous with mouse epithelin precursor from a highly tumorigenic cell line. J Biol Chem 268: 10863 – 10869.
dc.identifier.citedreferenceAgathocleous M, Harris WA. 2009. From progenitors to differentiated cells in the vertebrate retina. Annu Rev Cell Dev Biol 25: 45 – 69.
dc.identifier.citedreferenceAsakura R, Matsuwaki T, Shim J‐H, Yamanouchi K, Nishihara M. 2011. Involvement of progranulin in the enhancement of hippocampal neurogenesis by voluntary exercise. Neuroreport 22: 881 – 886.
dc.identifier.citedreferenceBaker M, Mackenzie IR, Pickering‐Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, et al. 2006. Mutations in progranulin cause tau‐negative frontotemporal dementia linked to chromosome 17. Nature 442: 916 – 919.
dc.identifier.citedreferenceBateman A, Bennett HP. 1998. Granulins: The structure and function of an emerging family of growth factors. J Endocrinol 158: 145 – 151.
dc.identifier.citedreferenceBateman A, Bennett HPJ. 2009. The granulin gene family: From cancer to dementia. Bioessays 31: 1245 – 1254.
dc.identifier.citedreferenceBaye LM, Link BA. 2007. Interkinetic nuclear migration and the selection of neurogenic cell divisions during vertebrate retinogenesis. J Neurosci 27: 10143 – 10152.
dc.identifier.citedreferenceBill BR, Petzold AM, Clark KJ, Schimmenti LA, Ekker SC. 2009. A primer for morpholino use in zebrafish. Zebrafish 6: 69 – 77.
dc.identifier.citedreferenceCadieux B, Chitramuthu BP, Baranowski D, Bennett HP. 2005. The zebrafish progranulin gene family and antisense transcripts. BMC Genomics 6: 156.
dc.identifier.citedreferenceCasano AM, Alberb M, Peri F. 2016. Develpmental apoptosis mediates entry and positioning of microglia in the zebrafish brain. Cell Rep 16: 897 – 906.
dc.identifier.citedreferenceCepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. 1996. Cell fate determination in the vertebrate retina. Proc Natl Acad SciUSA 93: 589 – 595.
dc.identifier.citedreferenceCraig SEL, Calinescu A‐A, Hitchcock PF. 2008. Identification of the molecular signatures integral to regenerating photoreceptors in the retina of the zebra fish. J Ocul Biol Dis Infor 1: 73 – 84.
dc.identifier.citedreferenceCruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, et al. 2006. Null mutations in progranulin cause ubiquitin‐positive frontotemporal dementia linked to chromosome 17q21. Nature 442: 920 – 924.
dc.identifier.citedreferenceCuadros MA, Martin C, Coltey P, Almendros A, Navascués J. 1993. First appearance, distribution, and origin of macrophages in the early development of the avian central nervous system. J Comp Neurol 330: 113 – 129.
dc.identifier.citedreferenceCuadros MA, Navascués J. 2001. Early origin and colonization of the developing central nervous system by microglial precursors. Prog Brain Res 132: 51 – 59.
dc.identifier.citedreferenceDai X‐M, Zong X‐H, Akhter MP, Stanley ER. 2004. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. J Bone Miner Res 19: 1441 – 1451.
dc.identifier.citedreferenceDaniel R, He Z, Carmichael KP, Halper J, Bateman A. 2000. Cellular localization of gene expression for progranulin. J Histochem Cytochem 48: 999 – 1009.
dc.identifier.citedreferenceDas T, Payer B, Cayouette M, Harris WA. 2003. In vivo time‐lapse imaging of cell divisions during neurogenesis in the developing zebrafish retina. Neuron 37: 597 – 609.
dc.identifier.citedreferenceDe Muynck L, Van Damme P. 2011. Cellular effects of progranulin in health and disease. J Mol Neurosci 45: 549 – 560.
dc.identifier.citedreferenceDong T, Yang D, Li R, Zhang L, Zhao H, Shen Y, Zhang X, Kong B, Wang L. 2016. PGRN promotes migration and invasion of epithelial ovarian cancer cells through an epithelial mesenchymal transition program and the activation of cancer associated fibroblasts. Exp Mol Pathol 100: 17 – 25.
dc.identifier.citedreferenceEaster SS, Nicola GN. 1996. The development of vision in the zebrafish (Danio rerio). Dev Biol 180: 646 – 663.
dc.identifier.citedreferenceEisen JS, Smith JC. 2008. Controlling morpholino experiments: Don’t stop making antisense. Development 135: 1735 – 1743.
dc.identifier.citedreferenceErblich B, Zhu L, Etgen AM, Dobrenis K, Pollard JW. 2011. Absence of colony stimulation factor‐1 receptor results in loss of microglia, disrupted brain development and olfactory deficits. PLoS One 6: e26317.
dc.identifier.citedreferenceGao X, Joselin AP, Wang L, Kar A, Ray P, Bateman A, Goate AM, et al. 2010. Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK‐3β. Protein Cell 1: 552 – 562.
dc.identifier.citedreferenceGinhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330: 841 – 845.
dc.identifier.citedreferenceGinhoux F, Prinz M. 2015. Origin of microglia: Current concepts and past controversies. Cold Spring Harb Perspect Biol 7:a020537.
dc.identifier.citedreferenceGramage E, D’Cruz T, Taylor S, Thummel R, Hitchcock PF. 2015. Midkine‐a protein localization in the developing and adult retina of the zebrafish and its function during photoreceptor regeneration. PLoS One 10: e0121789.
dc.identifier.citedreferenceHe Z, Bateman A. 1999. Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Res 59: 3222 – 3229.
dc.identifier.citedreferenceHe Z, Bateman A. 2003. Progranulin (granulin‐epithelin precursor, PC‐cell‐derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J Mol Med 81: 600 – 612.
dc.identifier.citedreferenceHe Z, Ismail A, Kriazhev L, Sadvakassova G, Bateman A. 2002. Progranulin (PC‐cell‐derived growth factor/acrogranin) regulates invasion and cell survival. Cancer Res 62: 5590 – 5596.
dc.identifier.citedreferenceHe Z, Ong CHP, Halper J, Bateman A. 2003. Progranulin is a mediator of the wound response. Nat Med 9: 225 – 229.
dc.identifier.citedreferenceHerbomel P. 2001. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M‐CSF receptor‐dependent invasive process. Dev Biol 238: 274 – 288.
dc.identifier.citedreferenceHerbomel P, Levraud J‐P. 2005. Imaging early macrophage differentiation, migration, and behaviors in live zebrafish embryos. Methods Mol Med 105: 199 – 214.
dc.identifier.citedreferenceHerbomel P, Thisse B, Thisse C. 1999. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126: 3735 – 3745.
dc.identifier.citedreferenceHitchcock P, Kakuk‐Atkins L. 2004. The basic helix‐loop‐helix transcription factor neuroD is expressed in the rod lineage of the teleost retina. J Comp Neurol 477: 108 – 117.
dc.identifier.citedreferenceHitchcock P, Ochocinska M, Sieh A, Otteson D. 2004. Persistent and injury‐induced neurogenesis in the vertebrate retina. Prog Retin Eye Res 23: 183 – 194.
dc.identifier.citedreferenceHitchcock PF, Raymond PA. 2004. The teleost retina as a model for developmental and regeneration biology. Zebrafish 1: 257 – 271.
dc.identifier.citedreferenceHu M, Easter SS. 1999. Retinal neurogenesis: The formation of the initial central patch of postmitotic cells. Dev Biol 207: 309 – 321.
dc.identifier.citedreferenceKay JN. 2005. Staggered cell‐intrinsic timing of ath5 expression underlies the wave of ganglion cell neurogenesis in the zebrafish retina. Development 132: 2573 – 2585.
dc.identifier.citedreferenceKok FO, Shin M, Ni C‐W, Gupta A, Grosse AS, van Impel A, Kirchmaier BC, et al. 2015. Reverse genetic screening revealspoor correlation between morpholino‐induced and mutant phenotypes in zebrafish. Dev Cell 32: 97 – 108.
dc.identifier.citedreferenceLaird AS, Van Hoecke A, De Muynck L, Timmers M, Van Den Bosch L, Van Damme P, Robberecht W. 2010. Progranulin is neurotrophic in vivo and protects against a mutant TDP‐43 induced axonopathy. PLoS One 5: e13368.
dc.identifier.citedreferenceLi YH, Chen MHC, Gong HY, Hu SY, Li YW, Lin GH, Lin CC, et al. 2010. Progranulin A‐mediated MET signaling is essential for liver morphogenesis in zebrafish. J Biol Chem 285: 41001 – 41009.
dc.identifier.citedreferenceLi YH, Chen HY, Li YW, Wu SY, Wangta‐Liu, Lin GH, Hu SY, et al. 2013. Progranulin regulates zebrafish muscle growth and regeneration through maintaining the pool of myogenic progenitor cells. Sci Rep 3: 1176.
dc.identifier.citedreferenceLi Z, Hu M, Ochocinska MJ, Joseph NM, Easter SS. 2000. Modulation of cell proliferation in the embryonic retina of zebrafish (Danio rerio). Dev Dyn 219: 391 – 401.
dc.identifier.citedreferenceLiau LM, Lallone RL, Seitz RS, Buznikov A, Gregg JP, Kornblum HI, Nelson SF, et al. 2000. Identification of a human glioma‐associated growth factor gene, granulin, using differential immuno‐absorption. Cancer Res 60: 1353 – 1360.
dc.identifier.citedreferenceLuo J, Uribe RA, Hayton S, Calinescu A‐A, Gross JM, Hitchcock PF. 2012. Midkine‐A functions upstream of Id2a to regulate cell cycle kinetics in the developing vertebrate retina. Neural Dev 7: 33.
dc.identifier.citedreferenceMasai I, Stemple DL, Okamoto H, Wilson SW. 2000. Midline signals regulate retinal neurogenesis in zebrafish. Neuron 27: 251 – 263.
dc.identifier.citedreferenceMeireles AM, Shiau CE, Guenther CA, Sidik H, Kingsley DM, Talbot WS. 2014. The phosphate exporter xpr1b is required for differentiation of tissue‐resident macrophages. Cell Rep 8: 1659 – 1667.
dc.identifier.citedreferenceMoisse K, Volkening K, Leystra‐Lantz C, Welch I, Hill T, Strong MJ. 2009. Divergent patterns of cytosolic TDP‐43 and neuronal progranulin expression following axotomy: Implications for TDP‐43 in the physiological response to neuronal injury. Brain Res 1249: 202 – 211.
dc.identifier.citedreferenceMonami G, Gonzalez EM, Hellman M, Gomella LG, Baffa R, Iozzo RV, Morrione A. 2006. Proepithelin promotes migration and invasion of 5637 bladder cancer cells through the activation of ERK1/2 and the formation of a paxillin/FAK/ERK complex. Cancer Res 66: 7103 – 7110.
dc.identifier.citedreferenceNandi S, Gokhan S, Dai X‐M, Wei S, Enikolopov G, Lin H, Mehler MF, Stanley ER. 2012. The CSF‐1 receptor ligands IL‐34 and CSF‐1 exhibit distinct developmental brain expression patterns and regulate neural progenitor cell maintenance and maturation. Dev Biol 367: 100 – 113.
dc.identifier.citedreferenceNaphade SB, Kigerl KA, Jakeman LB, Kostyk SK, Popovich PG, Kuret J. 2009. Progranulin expression is upregulated after spinal contusion in mice. Acta Neuropathol 119: 123 – 133.
dc.identifier.citedreferenceNasevicius A, Ekker SC. 2000. Effective targeted gene “knockdown” in zebrafish. Nat Genet 26: 216 – 220.
dc.identifier.citedreferenceNayak D, Roth TL, McGavern DB. 2014. Microglia development and function. Annu Rev Immunol 32: 367 – 402.
dc.identifier.citedreferenceNedachi T, Kawai T, Matsuwaki T, Yamanouchi K, Nishihara M. 2011. Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3β phosphorylation. Neuroscience 185: 106 – 115.
dc.identifier.citedreferenceOchocinska MJ, Hitchcock PF. 2007. Dynamic expression of the basic helix‐loop‐helix transcription factor neuroD in the rod and cone photoreceptor lineages in the retina of the embryonic and larval zebrafish. J Comp Neurol 501: 1 – 12.
dc.identifier.citedreferenceOng CH, Bateman A. 2003. Progranulin (Granulin‐epithelin precursor, PC‐cell derived growth factor, Acrogranin) in proliferation and tumorigenesis. Histol Histopathol 18: 1275 – 1288.
dc.identifier.citedreferenceOtteson DC, D’Costa AR, Hitchcock PF. 2001. Putative stem cells and the lineage of rod photoreceptors in the mature retina of the goldfish. Dev Biol 232: 62 – 76.
dc.identifier.citedreferencePhilips T, De Muynck L, Thu HNT, Weynants B, Vanacker P, Dhondt J, Sleegers K, et al. 2010. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol 69: 1191 – 1200.
dc.identifier.citedreferencePickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, Burkhardt M, et al. 2011. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol 178: 284 – 295.
dc.identifier.citedreferencePolazzi E, Contestabile A. 2002. Reciprocal interactions between microglia and neurons: From survival to neuropathology. Rev Neurosci 13: 221 – 242.
dc.identifier.citedreferencePrinz M, Priller J. 2014. Microglia and brain macrophagesin the molecular age: From origin toneuropsychiatric disease. Nature Publishing Group 15: 300 – 312.
dc.identifier.citedreferenceQuastler H, Sherman FG. 1959. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res 17: 420 – 438.
dc.identifier.citedreferenceRachel RA, Dölen G, Hayes NL, Lu A, Erskine L, Nowakowski RS, Mason CA. 2002. Spatiotemporal features of early neuronogenesis differ in wild‐type and albino mouse retina. J Neurosci 22: 4249 – 4263.
dc.identifier.citedreferenceRaymond PA, Barthel LK, Bernardos RL, Perkowski JJ. 2006. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 6: 36.
dc.identifier.citedreferenceRossi A, Kontarakis Z, Gerri C, Nolte H, Hölper S, Krüger M, Stainier DYR. 2015a. Genetic compensation induced by deleterious mutations but not gene knockdowns. Nature 524: 230 – 233.
dc.identifier.citedreferenceRossi F, Casano AM, Henke K, Richter K, Peri F. 2015b. The SLC7A7 transporter identifies microglial precursors prior to entry into the brain. Cell Rep 11: 1008 – 1017.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.