Show simple item record

A multispacecraft study of a small flux rope entrained by rolling back magnetic field lines

dc.contributor.authorHuang, Jia
dc.contributor.authorLiu, Yong C.‐m.
dc.contributor.authorPeng, Jun
dc.contributor.authorLi, Hui
dc.contributor.authorKlecker, Berndt
dc.contributor.authorFarrugia, Charles J.
dc.contributor.authorYu, Wenyuan
dc.contributor.authorGalvin, Antoinette B.
dc.contributor.authorZhao, Liang
dc.contributor.authorHe, Jiansen
dc.date.accessioned2017-10-05T18:19:39Z
dc.date.available2018-09-13T15:12:06Zen
dc.date.issued2017-07
dc.identifier.citationHuang, Jia; Liu, Yong C.‐m. ; Peng, Jun; Li, Hui; Klecker, Berndt; Farrugia, Charles J.; Yu, Wenyuan; Galvin, Antoinette B.; Zhao, Liang; He, Jiansen (2017). "A multispacecraft study of a small flux rope entrained by rolling back magnetic field lines." Journal of Geophysical Research: Space Physics 122(7): 6927-6939.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/138376
dc.description.abstractWe present a small flux rope (SFR) with smooth magnetic field rotations entrained by rolling back magnetic field lines around 1 AU. Such SFRs have only been seldom reported in the literature. This SFR was adjacent to a heliospheric plasma sheet (HPS), which is defined as a high plasma beta region in the vicinity of a heliospheric current sheet. Even though the SFR and HPS have different plasma beta, they possess similar plasma signatures (such as temperature, density, and bulk speed), density ratio of alpha particleâ toâ proton (Nα/Np), and heavy ion ionization states, which imply that they may have a similar origin in the corona. The composition and the configuration of the rolling back magnetic field lines suggested that the SFR originated from the streamer belt through interchange reconnection. The origin processes of the SFR are presented here. Combining the observations of STEREO and ACE, the SFR was shown to have an axis tilted to the ecliptic plane and the radius may vary with different spatial positions. In this study, we suggest that interchange reconnection can play an important role for the origin of, at least, some SFRs and slow solar wind.Key PointsCompositional data are used to diagnose the origin of the SFR in this studyInterchange reconnection can play an important role for the origin of some SFRs and slow solar windSpacecraft may miss the in situ SFRs due to their morphologies
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othersmall flux rope
dc.subject.othersolar wind
dc.subject.otherinterchange reconnection
dc.subject.otherrolling back magnetic field lines
dc.titleA multispacecraft study of a small flux rope entrained by rolling back magnetic field lines
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138376/1/jgra53590_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138376/2/jgra53590.pdf
dc.identifier.doi10.1002/2017JA023906
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSauvaud, J. A., et al. ( 2008 ), The IMPACT Solar Wind Electron Analyzer (SWEA), The STEREO Mission, edited by C. T. Russell, pp. 227 â 239, Springer, New York, doi: 10.1007/978â 0â 387â 09649â 0_9.
dc.identifier.citedreferenceMoore, R. L., J. W. Cirtain, A. C. Sterling, and D. A. Falconer ( 2010 ), Dichotomy of solar coronal jets: Standard jets and blowout jets, Astrophys. J., 720, 757 â 770, doi: 10.1088/0004â 637X/720/1/757.
dc.identifier.citedreferenceOpitz, A., et al. ( 2009 ), Temporal evolution of the solar wind bulk velocity at solar minimum by correlating the STEREO A and B PLASTIC measurements, Sol. Phys., 256, 365 â 377, doi: 10.1007/s11207â 008â 9304â 7.
dc.identifier.citedreferenceOwens, M. J. ( 2016 ), Do the legs of magnetic clouds contain twisted fluxâ rope magnetic fields?, Astrophys. J., 818 ( 2 ), 197.
dc.identifier.citedreferenceOwens, M. J., N. U. Crooker, and M. Lockwood ( 2013 ), Solar origin of heliospheric magnetic field inversions: Evidence for coronal loop opening within pseudostreamers, J. Geophys. Res. Space Physics, 118, 1868 â 1879, doi: 10.1002/jgra.50259.
dc.identifier.citedreferenceRichardson, I. G., and H. V. Cane ( 1995 ), Regions of abnormally low proton temperature in the solar wind (1965â 1991) and their association with ejecta, J. Geophys. Res., 100 ( A12 ), 23,397 â 23,412, doi: 10.1029/95JA02684.
dc.identifier.citedreferenceRichardson, I. G., and H. V. Cane ( 2004 ), Identification of interplanetary coronal mass ejections at 1 AU using multiple solar wind plasma composition anomalies, J. Geophys. Res., 109, A09104, doi: 10.1029/2004JA010598.
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2009 ), A multispacecraft analysis of a smallâ scale transient entrained by solar wind streams, Sol. Phys., 256 ( 1â 2 ), 307.
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2010 ), Intermittent release of transients in the slow solar wind: 1. Remote sensing observations, J. Geophys. Res., 115, A04103, doi: 10.1029/2009JA014471.
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2011 ), The solar origin of small interplanetary transients, Astrophys. J., 734, doi: 10.1088/0004â 637X/734/1/7.
dc.identifier.citedreferenceSheeley, N. R., Jr., et al. ( 1997 ), Measurements of flow speeds in the corona between 2 and 30 R â , Astrophys. J., 484, 472, doi: 10.1086/304338.
dc.identifier.citedreferenceSimunac, K. D. C., et al. ( 2009 ), In situ observations of solar wind stream interface evolution, Sol. Phys., 259 ( 1â 2 ), 323 â 344, doi: 10.1007/s11207â 009â 9393â y.
dc.identifier.citedreferenceSmith, C. W., J. L’Heureux, N. F. Ness, M. H. Acuña, L. F. Burlaga, and J. Scheifele ( 1998 ), The ACE magnetic fields experiment, Space Sci. Rev., 86, 613 â 632, doi: 10.1023/A:1005092216668.
dc.identifier.citedreferenceSong, H. Q., Y. Chen, K. Liu, S. W. Feng, and L. D. Xia ( 2009 ), Quasiâ periodic releases of streamer blobs and velocity variability of the slow solar wind near the Sun, Sol. Phys., 258, 129 â 140.
dc.identifier.citedreferenceSong, H. Q., Z. Zhong, Y. Chen, J. Zhang, X. Cheng, L. Zhao, Q. Hu, and G. Li ( 2016 ), A statistical study of the average iron charge state distributions inside magnetic clouds for solar cycle 23, Astrophys. J. Suppl. Ser., 224 ( 2 ), 27.
dc.identifier.citedreferenceSuess, S. T., Y.â K. Ko, R. von Steiger, and R. L. Moore ( 2009 ), Quiescent current sheets in the solar wind and origins of slow wind, J. Geophys. Res., 114, A04103, doi: 10.1029/2008JA013704.
dc.identifier.citedreferenceTian, H., S. Yao, Q. Zong, J. He, and Y. Qi ( 2010 ), Signatures of magnetic reconnection at boundaries of interplanetary smallâ scale magnetic flux ropes, Astrophys. J., 720 ( 1 ), 454.
dc.identifier.citedreferencevon Steiger, R., N. A. Schwadron, L. A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R. R. Wimmerâ Schweingruber, and T. H. Zurbuchen ( 2000 ), Composition of quasiâ stationary solar wind flows from Ulysses/solar wind ion composition spectrometer, J. Geophys. Res., 105 ( A12 ), 27,217 â 27,238, doi: 10.1029/1999JA000358.
dc.identifier.citedreferenceWang, C., J. D. Richardson, L. F. Burlaga, and N. F. Ness ( 2003 ), On radial heliospheric magnetic fields: Voyager 2 observation and model, J. Geophys. Res., 108 ( A5 ), 1205, doi: 10.1029/2002JA009809.
dc.identifier.citedreferenceWang, Y., B. Zhuang, Q. Hu, R. Liu, C. Shen, and Y. Chi ( 2016 ), On the twists of interplanetary magnetic flux ropes observed at 1 AU, J. Geophys. Res. Space Physics, 121, 9316 â 9339, doi: 10.1002/2016JA023075.
dc.identifier.citedreferenceWang, Y. M., N. R. Sheeley Jr., J. H. Walters, G. E. Brueckner, R. A. Howard, D. J. Michels, P. L. Lamy, R. Schwenn, and G. M. Simnett ( 1998 ), Origin of streamer material in the outer corona, Astrophys. J., 498, L165.
dc.identifier.citedreferenceWang, Y. M., N. R. Sheeley Jr., D. G. Socker, R. A. Howard, and N. B. Rich ( 2000 ), The dynamical nature of coronal streamers, J. Geophys. Res., 105 ( A11 ), 25,133 â 25,142, doi: 10.1029/2000JA000149.
dc.identifier.citedreferenceWimmerâ schweingruber, R. F., and D. M. Hassler ( 2016 ), Tracing heliospheric structures to their solar origin, in Solar Wind Fourteen, AIP Conf. Proc., vol. 1720, 100002â 1â 100002â 4, doi: 10.1063/1.4943857.
dc.identifier.citedreferenceWinterhalter, D., E. J. Smith, M. E. Burton, N. Murphy, and D. J. McComas ( 1994 ), The heliospheric plasma sheet, J. Geophys. Res., 99 ( A4 ), 6667 â 6680, doi: 10.1029/93JA03481.
dc.identifier.citedreferenceYu, W., et al. ( 2014 ), A statistical analysis of properties of small transients in the solar wind 2007â 2009: STEREO and Wind observations, J. Geophys. Res. Space Physics, 119, 689 â 708, doi: 10.1002/2013JA019115.
dc.identifier.citedreferenceYu, W., C. J. Farrugia, A. B. Galvin, N. Lugaz, J. G. Luhmann, K. D. C. Simunac, and E. Kilpua ( 2016 ), Small solar wind transients at 1 AU: STEREO observations (2007â 2014) and comparison with nearâ Earth wind results (1995â 2014), J. Geophys. Res. Space Physics, 121, doi: 10.1002/2016JA022642.
dc.identifier.citedreferenceZhao, L., T. H. Zurbuchen, and L. A. Fisk ( 2009 ), Global distribution of the solar wind during solar cycle 23: ACE observations, Geophys. Res. Lett., 36, L14104, doi: 10.1029/2009GL039181.
dc.identifier.citedreferenceZhao, L., E. Landi, T. H. Zurbuchen, L. A. Fisk, and S. T. Lepri ( 2014 ), The evolution of 1 AU equatorial solar wind and its association with the morphology of the heliospheric current sheet from solar cycle 23 to 24, Astrophys. J., doi: 10.1088/0004â 637X/793/1/44.
dc.identifier.citedreferenceAcuña, M. H., D. Curtis, J. L. Scheifele, C. T. Russell, P. Schroeder, A. Szabo, and J. G. Luhmann ( 2008 ), The STEREO/IMPACT magnetic field experiment, in The STEREO Mission, edited by C. T. Russell, pp. 203 â 226, Springer, New York, doi: 10.1007/978â 0â 387â 09649â 0_8.
dc.identifier.citedreferenceBalogh, A., L. J. Lanzerotti, and S. T. Suess ( 2007 ), The Heliosphere Through the Solar Activity Cycle, pp. 53 â 62, Springer, Chichester, U. K.
dc.identifier.citedreferenceCartwright, M. L., and M. B. Moldwin ( 2008 ), Comparison of smallâ scale flux rope magnetic properties to largeâ scale magnetic clouds: Evidence for reconnection across the HCS?, J. Geophys. Res., 113, A09105, doi: 10.1029/2008JA013389.
dc.identifier.citedreferenceChen, Y., X. Li, H. Q. Song, Q. Q. Shi, S. W. Feng, and L. D. Xia ( 2009 ), Intrinsic instability of coronal streamers, Astrophys. J., 691 ( 2 ), 1936, doi: 10.1088/0004â 637X/691/2/1936.
dc.identifier.citedreferenceCrooker, N. U., S. W. Kahler, D. E. Larson, and R. P. Lin ( 2004 ), Largeâ scale magnetic field inversions at sector boundaries, J. Geophys. Res., 109, A03108, doi: 10.1029/2003JA010278.
dc.identifier.citedreferenceFeldman, W. C., J. R. Asbridge, S. J. Bame, E. E. Fenimore, and J. T. Gosling ( 1981 ), The solar origin of solar interstream flows: Near equatorial coronal streamers, J. Geophys. Res., 86, 5408 â 5416, doi: 10.1029/JA086iA07p05408.
dc.identifier.citedreferenceFeng, H. Q., and J. M. Wang ( 2015 ), Observations of several unusual plasma compositional signatures within small interplanetary magnetic flux ropes, Astrophys. J., 809, 112.
dc.identifier.citedreferenceFeng, H. Q., G. Q. Zhao, and J. M. Wang ( 2015 ), Counterstreaming electrons in small interplanetary magnetic flux ropes, J. Geophys. Res. Space Physics, 120, 10,175 â 10,184, doi: 10.1002/2015JA021643.
dc.identifier.citedreferenceFisk, L. A., T. H. Zurbuchen, and N. A. Schwadron ( 1999 ), On the coronal magnetic field: Consequences of largeâ scale motions, Astrophys. J., 521, 868 â 877.
dc.identifier.citedreferenceFoullon, C., et al. ( 2009 ), The apparent layered structure of the heliospheric current sheet: Multiâ spacecraft observations, Sol. Phys., 259 ( 1â 2 ), 389 â 416, doi: 10.1007/s11207â 009â 9452â 4.
dc.identifier.citedreferenceFoullon, C., et al. ( 2011 ), Plasmoid releases in the heliospheric current sheet and associated coronal hole boundary layer evolution, Astrophys. J., 737, 16, doi: 10.1088/0004â 637X/737/1/16.
dc.identifier.citedreferenceGalvin, A. B., et al. ( 2008 ), The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories, Space Sci. Rev., 136 ( 1â 4 ), 437 â 486, doi: 10.1007/s11214â 007â 9296â x.
dc.identifier.citedreferenceGeiss, J. ( 1982 ), Processes affecting abundances in the solar wind, Space Sci. Rev., 33, 201 â 217.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497 â 539, doi: 10.1023/A:1005036131689.
dc.identifier.citedreferenceGosling, J. T., G. Borrini, J. R. Asbridge, S. J. Bame, W. C. Feldman, and R. T. Hansen ( 1981 ), Coronal streamers in the solar wind at 1 AU, J. Geophys. Res., 86 ( A7 ), 5438 â 5448, doi: 10.1029/JA086iA07p05438.
dc.identifier.citedreferenceGosling, J. T., and R. M. Skoug ( 2002 ), On the origin of radial magnetic fields in the heliosphere, J. Geophys. Res., 107 ( A10 ), 1327, doi: 10.1029/2002JA009434.
dc.identifier.citedreferenceHuang, J., Y. C.â M. Liu, B. Klecker, and Y. Chen ( 2016a ), Coincidence of heliospheric current sheet and stream interface: Implications for the origin and evolution of the solar wind, J. Geophys. Res. Space Physics, 121, 19 â 29, doi: 10.1002/2015JA021729.
dc.identifier.citedreferenceHuang, J., Y. C.â M. Liu, Z. Qi, B. Klecker, O. Marghitu, A. B. Galvin, C. J. Farrugia, and X. Li ( 2016b ), A multievent study of the coincidence of heliospheric current sheet and stream interface, J. Geophys. Res. Space Physics, 121, 10,768 â 10,782, doi: 10.1002/2016JA022842.
dc.identifier.citedreferenceHundhausen, A. J. ( 1972 ), Coronal Expansion and Solar Wind, Phys. Chem. Space, vol. 5, pp. 94 â 121, Springer, New York.
dc.identifier.citedreferenceJanvier, M., P. Démoulin, and S. Dasso ( 2014a ), In situ properties of small and large flux ropes in the solar wind, J. Geophys. Res. Space Physics, 119, 7088 â 7107, doi: 10.1002/2014JA020218.
dc.identifier.citedreferenceJanvier, M., P. Démoulin, and S. Dasso ( 2014b ), Are there different populations of flux ropes in the solar wind?, Sol. Phys., 289, 2633 â 2652, doi: 10.1007/s11207â 014â 0486â x.
dc.identifier.citedreferenceKerdraon, A., and J.â M. Delouis ( 1997 ), The Nançay Radioheliograph, in Coronal Physics From Radio and Space Observations, Lecture Notes in Physics, vol. 483, edited by G. Trottet, pp. 192 â 201, Springer, Berlin.
dc.identifier.citedreferenceKhabarova, O., G. P. Zank, G. Li, J. A. le Roux, G. M. Webb, A. Dosch, and O. E.. Malandraki ( 2015 ), Smallâ scale magnetic islands in the solar wind and their role in particle acceleration. I. Dynamics of magnetic islands near the heliospheric current sheet, Astrophys. J., 808, 181, doi: 10.1088/0004â 637X/808/2/181.
dc.identifier.citedreferenceKhabarova, O., G. P. Zank, G. Li, O. E. Malandraki, J. A. le Roux, and G. M. Webb ( 2016 ), Smallâ scale magnetic islands in the solar wind and their role in particle acceleration. II. Particle energization inside magnetically confined cavities, Astrophys. J., 827, 122, doi: 10.3847/0004â 637X/827/2/122.
dc.identifier.citedreferenceKahler, S. W., N. U. Crocker, and J. T. Gosling ( 1996 ), The topology of intrasector reversals of the interplanetary magnetic field, J. Geophys. Res., 101 ( A11 ), 24,373 â 24,382, doi: 10.1029/96JA02232.
dc.identifier.citedreferenceKilpua, E. K. J., et al. ( 2009 ), Small solar wind transients and their connection to the largeâ scale coronal structure, Sol. Phys., 256, 327 â 344.
dc.identifier.citedreferenceLawrance, M. B., A. Shanmugaraju, Y. J. Moon, M. S. Ibrahim, and S. Umapathy ( 2016 ), Relationships between interplanetary coronal mass ejection characteristics and geoeffectiveness in the rising phase of solar cycles 23 and 24, Sol. Phys., 291 ( 5 ), 1547 â 1560.
dc.identifier.citedreferenceLepri, S. T., and T. H. Zurbuchen ( 2004 ), Iron charge state distributions as an indicator of hot ICMEs: Possible sources and temporal and spatial variations during solar maximum, J. Geophys. Res., 109, A01112, doi: 10.1029/2003JA009954.
dc.identifier.citedreferenceLi, G. ( 2008 ), Identifying currentâ sheetâ like structures in the solar wind, Astrophys. J., 672, L65 â L68.
dc.identifier.citedreferenceLiu, Y. C.â M., et al. ( 2014 ), A statistical analysis of heliospheric plasma sheets, heliospheric current sheets, and sector boundaries observed in situ by STEREO, J. Geophys. Res. Space Physics, 119, 8721 â 8732, doi: 10.1002/2014JA019956.
dc.identifier.citedreferenceLiu, Y. D., H. Hu, C. Wang, J. G. Luhmann, J. D. Richardson, Z. Yang, and R. Wang ( 2016 ), On Sunâ toâ Earth propagation of coronal mass ejections: II. Slow events and comparison with others, Astrophys. J. Suppl. Ser., 222 ( 2 ), 23.
dc.identifier.citedreferenceLuhmann, J. G., et al. ( 2008 ), STEREO IMPACT investigation goals, measurements, and data products overview, Space Sci. Rev., 136 ( 1â 4 ), 117 â 184, doi: 10.1007/s11214â 007â 9170â x.
dc.identifier.citedreferenceLundquist, S. ( 1950 ), Magnetohydrostatic fields, Ark. Fys., 2, 361 â 365.
dc.identifier.citedreferenceMandrini, C. H., et al. ( 2005 ), Interplanetary flux rope ejected from an Xâ ray bright point. The smallest magnetic cloud sourceâ region ever observed, Astron. Astrophys., 434, 725 â 740, doi: 10.1051/0004â 6361:20041079.
dc.identifier.citedreferenceMandrini, C. H., et al. ( 2014 ), How can active region plasma escape into the solar wind from below a closed helmet streamer?, Sol. Phys., 289, 4151, doi: 10.1007/s11207â 014â 0582â y.
dc.identifier.citedreferenceMcComas, D. J., S. J. Bame, P. Barker, W. C. Feldman, J. L. Phillips, P. Riley, and J. W. Griffee ( 1998 ), Solar wind electron proton alpha monitor (SWEPAM) for the Advanced Composition Explorer, Space Sci. Rev., 86, 563 â 612, doi: 10.1023/A:1005040232597.
dc.identifier.citedreferenceMoldwin, M. B., S. Ford, R. Lepping, J. Slavin, and A. Szabo ( 2000 ), Smallâ scale magnetic flux ropes in the solar wind, Geophys. Res. Lett., 27 ( 1 ), 57 â 60, doi: 10.1029/1999GL010724.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.