Show simple item record

The cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery

dc.contributor.authorTarca, Adi L.
dc.contributor.authorFitzgerald, Wendy
dc.contributor.authorChaemsaithong, Piya
dc.contributor.authorXu, Zhonghui
dc.contributor.authorHassan, Sonia S.
dc.contributor.authorGrivel, Jean‐charles
dc.contributor.authorGomez‐lopez, Nardhy
dc.contributor.authorPanaitescu, Bogdan
dc.contributor.authorPacora, Percy
dc.contributor.authorMaymon, Eli
dc.contributor.authorErez, Offer
dc.contributor.authorMargolis, Leonid
dc.contributor.authorRomero, Roberto
dc.date.accessioned2017-10-05T18:20:03Z
dc.date.available2018-12-03T15:34:04Zen
dc.date.issued2017-09
dc.identifier.citationTarca, Adi L.; Fitzgerald, Wendy; Chaemsaithong, Piya; Xu, Zhonghui; Hassan, Sonia S.; Grivel, Jean‐charles ; Gomez‐lopez, Nardhy ; Panaitescu, Bogdan; Pacora, Percy; Maymon, Eli; Erez, Offer; Margolis, Leonid; Romero, Roberto (2017). "The cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery." American Journal of Reproductive Immunology 78(3): n/a-n/a.
dc.identifier.issn1046-7408
dc.identifier.issn1600-0897
dc.identifier.urihttps://hdl.handle.net/2027.42/138402
dc.publisherWiley Periodicals, Inc.
dc.publisherChurchill Livingstone
dc.subject.otherpreterm birth
dc.subject.otheramniocentesis
dc.subject.othercervical insufficiency
dc.subject.othercytokine
dc.subject.othermacrophage inflammatory protein
dc.subject.othernetwork analysis
dc.titleThe cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138402/1/aji12686_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138402/2/aji12686.pdf
dc.identifier.doi10.1111/aji.12686
dc.identifier.sourceAmerican Journal of Reproductive Immunology
dc.identifier.citedreferenceRedline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015; 213 ( 4 Suppl ): S21 â S28.
dc.identifier.citedreferenceCobo T, Kacerovsky M, Holst RM, et al. Intraâ amniotic inflammation predicts microbial invasion of the amniotic cavity but not spontaneous preterm delivery in preterm prelabor membrane rupture. Acta Obstet Gynecol Scand. 2012; 91: 930 â 935.
dc.identifier.citedreferenceKacerovsky M, Musilova I, Khatibi A, et al. Intraamniotic inflammatory response to bacteria: analysis of multiple amniotic fluid proteins in women with preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2012; 25: 2014 â 0027.
dc.identifier.citedreferenceKacerovsky M, Musilova I, Andrys C, et al. Prelabor rupture of membranes between 34 and 37 weeks: the intraamniotic inflammatory response and neonatal outcomes. Am J Obstet Gynecol. 2014; 210: 325.e1â 10.
dc.identifier.citedreferenceEndres LK, Wang EY. Interleukinâ 6 and tumor necrosis factor alpha as predictors of success after emergent cerclage. Am J Perinatol. 2004; 21: 477 â 481.
dc.identifier.citedreferenceLee KY, Jun HA, Kim HB, Kang SW. Interleukinâ 6, but not relaxin, predicts outcome of rescue cerclage in women with cervical incompetence. Am J Obstet Gynecol. 2004; 191: 784 â 789.
dc.identifier.citedreferenceJung EY, Park KH, Lee SY, Ryu A, Oh KJ. Nonâ invasive prediction of intraâ amniotic infection and/or inflammation in patients with cervical insufficiency or an asymptomatic short cervix (</=15 mm). Arch Gynecol Obstet. 2015; 292: 579 â 587.
dc.identifier.citedreferenceEsplin MS, Romero R, Chaiworapongsa T, et al. Monocyte chemotactic proteinâ 1 is increased in the amniotic fluid of women who deliver preterm in the presence or absence of intraâ amniotic infection. J Matern Fetal Neonatal Med. 2005; 17: 365 â 373.
dc.identifier.citedreferencePolettini J, Cobo T, Kacerovsky M, et al. Biomarkers of spontaneous preterm birth: a systematic review of studies using multiplex analysis. J Perinat Med. 2017; 45: 71 â 84.
dc.identifier.citedreferenceEsplin MS, Romero R, Chaiworapongsa T, et al. Amniotic fluid levels of immunoreactive monocyte chemotactic proteinâ 1 increase during term parturition. J Matern Fetal Neonatal Med. 2003; 14: 51 â 56.
dc.identifier.citedreferenceMittal P, Romero R, Tarca AL, et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J Perinat Med. 2010; 38: 617 â 643.
dc.identifier.citedreferenceProost P, Wuyts A, Van Damme J. Human monocyte chemotactic proteinsâ 2 and â 3: structural and functional comparison with MCPâ 1. J Leukoc Biol. 1996; 59: 67 â 74.
dc.identifier.citedreferenceGu L, Rutledge B, Fiorillo J, et al. In vivo properties of monocyte chemoattractant proteinâ 1. J Leukoc Biol. 1997; 62: 577 â 580.
dc.identifier.citedreferenceSilva AR, de Assis EF, Caiado LF, Marathe GK, Bozza MT, McIntyre TM, Zimmerman GA, Prescott SM, Bozza PT, Castroâ Fariaâ Neto HC. Monocyte chemoattractant proteinâ 1 and 5â lipoxygenase products recruit leukocytes in response to plateletâ activating factorâ like lipids in oxidized lowâ density lipoprotein. J Immunol. 2002; 168: 4112 â 4120.
dc.identifier.citedreferenceMuller WA. New mechanisms and pathways for monocyte recruitment. J Exp Med. 2001; 194: F47 â F51.
dc.identifier.citedreferenceSchall TJ, Bacon K, Toy KJ, Goeddel DV. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature. 1990; 347: 669 â 671.
dc.identifier.citedreferenceAlam R, Stafford S, Forsythe P, et al. RANTES is a chemotactic and activating factor for human eosinophils. J Immunol. 1993; 150 ( 8 Pt 1 ): 3442 â 3448.
dc.identifier.citedreferenceAdams DH, Lloyd AR. Chemokines: leucocyte recruitment and activation cytokines. Lancet. 1997; 349: 490 â 495.
dc.identifier.citedreferenceCampbell EM, Proudfoot AE, Yoshimura T, et al. Recombinant guinea pig and human RANTES activate macrophages but not eosinophils in the guinea pig. J Immunol. 1997; 159: 1482 â 1489.
dc.identifier.citedreferenceAppay V, Rowlandâ Jones SL. RANTES: a versatile and controversial chemokine. Trends Immunol. 2001; 22: 83 â 87.
dc.identifier.citedreferenceAthayde N, Romero R, Maymon E, et al. Interleukin 16 in pregnancy, parturition, rupture of fetal membranes, and microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2000; 182 ( 1 Pt 1 ): 135 â 141.
dc.identifier.citedreferencePacora P, Maymon E, Gervasi MT, et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. Am J Obstet Gynecol. 2000; 183: 904 â 910.
dc.identifier.citedreferenceHsu TY, Lin H, Lan KC, et al. High interleukinâ 16 concentrations in the early second trimester amniotic fluid: an independent predictive marker for preterm birth. J Matern Fetal Neonatal Med. 2013; 26: 285 â 289.
dc.identifier.citedreferenceMoroz LA, Simhan HN. Rate of sonographic cervical shortening and biologic pathways of spontaneous preterm birth. Am J Obstet Gynecol. 2014; 210: 555.e1â 5.
dc.identifier.citedreferenceMoreau JL, Chastagner P, Tanaka T, et al. Control of the ILâ 2 responsiveness of B lymphocytes by ILâ 2 and ILâ 4. J Immunol. 1995; 155: 3401 â 3408.
dc.identifier.citedreferenceMorel BF, Burke MA, Kalagnanam J, McCarthy SA, Tweardy DJ, Morel PA. Making sense of the combined effect of interleukinâ 2 and interleukinâ 4 on lymphocytes using a mathematical model. Bull Math Biol. 1996; 58: 569 â 594.
dc.identifier.citedreferenceBurke MA, Morel BF, Oriss TB, Bray J, McCarthy SA, Morel PA. Modeling the proliferative response of T cells to ILâ 2 and ILâ 4. Cell Immunol. 1997; 178: 42 â 52.
dc.identifier.citedreferencePalsson S, Hickling TP, Bradshawâ Pierce EL, et al. The development of a fullyâ integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst Biol. 2013; 7: 95.
dc.identifier.citedreferenceGong C, Linderman JJ, Kirschner D. Harnessing the heterogeneity of T cell differentiation fate to fineâ tune generation of effector and memory T cells. Front Immunol. 2014; 5: 57.
dc.identifier.citedreferenceKwoh CK, Ng PY. Network analysis approach for biology. Cell Mol Life Sci. 2007; 64: 1739 â 1751.
dc.identifier.citedreferenceAraujo RP, Liotta LA, Petricoin EF. Proteins, drug targets and the mechanisms they control: the simple truth about complex networks. Nat Rev Drug Discovery. 2007; 6: 871 â 880.
dc.identifier.citedreferenceHopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008; 4: 682 â 690.
dc.identifier.citedreferenceBroderick G, Fuite J, Kreitz A, Vernon SD, Klimas N, Fletcher MA. A formal analysis of cytokine networks in chronic fatigue syndrome. Brain Behav Immun. 2010; 24: 1209 â 1217.
dc.identifier.citedreferenceAndersen HF, Nugent CE, Wanty SD, Hayashi RH. Prediction of risk for preterm delivery by ultrasonographic measurement of cervical length. Am J Obstet Gynecol. 1990; 163: 859 â 867.
dc.identifier.citedreferenceIams JD, Goldenberg RL, Meis PJ, et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med. 1996; 334: 567 â 572.
dc.identifier.citedreferenceGoldenberg RL, Iams JD, Mercer BM, et al. The preterm prediction study: the value of new vs standard risk factors in predicting early and all spontaneous preterm births. NICHD MFMU Network. Am J Public Health. 1998; 88: 233 â 238.
dc.identifier.citedreferenceHeath VC, Southall TR, Souka AP, Elisseou A, Nicolaides KH. Cervical length at 23 weeks of gestation: prediction of spontaneous preterm delivery. Ultrasound Obstet Gynecol. 1998; 12: 312 â 317.
dc.identifier.citedreferenceBerghella V, Daly SF, Tolosa JE, et al. Prediction of preterm delivery with transvaginal ultrasonography of the cervix in patients with highâ risk pregnancies: does cerclage prevent prematurity? Am J Obstet Gynecol. 1999; 181: 809 â 815.
dc.identifier.citedreferenceWatson WJ, Stevens D, Welter S, Day D. Observations on the sonographic measurement of cervical length and the risk of premature birth. J Matern Fetal Med. 1999; 8: 17 â 19.
dc.identifier.citedreferenceCook CM, Ellwood DA. The cervix as a predictor of preterm delivery in â atâ riskâ women. Ultrasound Obstet Gynecol. 2000; 15: 109 â 113.
dc.identifier.citedreferenceHassan SS, Romero R, Berry SM, et al. Patients with an ultrasonographic cervical length < or =15 mm have nearly a 50% risk of early spontaneous preterm delivery. Am J Obstet Gynecol. 2000; 182: 1458 â 1467.
dc.identifier.citedreferenceTo MS, Skentou C, Liao AW, Cacho A, Nicolaides KH. Cervical length and funneling at 23 weeks of gestation in the prediction of spontaneous early preterm delivery. Ultrasound Obstet Gynecol. 2001; 18: 200 â 203.
dc.identifier.citedreferenceOwen J, Yost N, Berghella V, et al. Can shortened midtrimester cervical length predict very early spontaneous preterm birth? Am J Obstet Gynecol. 2004; 191: 298 â 303.
dc.identifier.citedreferenceTekesin I, Eberhart LH, Schaefer V, Wallwiener D, Schmidt S. Evaluation and validation of a new risk score (CLEOPATRA score) to predict the probability of premature delivery for patients with threatened preterm labor. Ultrasound Obstet Gynecol. 2005; 26: 699 â 706.
dc.identifier.citedreferenceDeFranco EA, Lewis DF, Odibo AO. Improving the screening accuracy for preterm labor: is the combination of fetal fibronectin and cervical length in symptomatic patients a useful predictor of preterm birth? A systematic review. Am J Obstet Gynecol. 2013; 208: 233.e1â 6.
dc.identifier.citedreferenceRomero R, Yeo L, Miranda J, Hassan SS, Condeâ Agudelo A, Chaiworapongsa T. A blueprint for the prevention of preterm birth: vaginal progesterone in women with a short cervix. J Perinat Med. 2013; 41: 27 â 44.
dc.identifier.citedreferenceBoots AB, Sanchezâ Ramos L, Bowers DM, Kaunitz AM, Zamora J, Schlattmann P. The shortâ term prediction of preterm birth: a systematic review and diagnostic metaanalysis. Am J Obstet Gynecol. 2014; 210: 54.e1â 10.
dc.identifier.citedreferenceMcIntosh J, Feltovich H, Berghella V, Manuck T. The role of routine cervical length screening in selected highâ and lowâ risk women for preterm birth prevention. Am J Obstet Gynecol. 2016; 215: B2 â B7.
dc.identifier.citedreferenceKushnir O, Vigil DA, Izquierdo L, Schiff M, Curet LB. Vaginal ultrasonographic assessment of cervical length changes during normal pregnancy. Am J Obstet Gynecol. 1990; 162: 991 â 993.
dc.identifier.citedreferenceOkitsu O, Mimura T, Nakayama T, Aono T. Early prediction of preterm delivery by transvaginal ultrasonography. Ultrasound Obstet Gynecol. 1992; 2: 402 â 409.
dc.identifier.citedreferenceIams JD, Paraskos J, Landon MB, Teteris JN, Johnson FF. Cervical sonography in preterm labor. Obstet Gynecol. 1994; 84: 40 â 46.
dc.identifier.citedreferenceTongsong T, Kamprapanth P, Srisomboon J, Wanapirak C, Piyamongkol W, Sirichotiyakul S. Single transvaginal sonographic measurement of cervical length early in the third trimester as a predictor of preterm delivery. Obstet Gynecol. 1995; 86: 184 â 187.
dc.identifier.citedreferenceHasegawa I, Tanaka K, Takahashi K, et al. Transvaginal ultrasonographic cervical assessment for the prediction of preterm delivery. J Matern Fetal Med. 1996; 5: 305 â 309.
dc.identifier.citedreferenceRozenberg P, Goffinet F, Malagrida L, et al. Evaluating the risk of preterm delivery: a comparison of fetal fibronectin and transvaginal ultrasonographic measurement of cervical length. Am J Obstet Gynecol. 1997; 176 ( 1 Pt 1 ): 196 â 199.
dc.identifier.citedreferenceBerghella V, Tolosa JE, Kuhlman K, Weiner S, Bolognese RJ, Wapner RJ. Cervical ultrasonography compared with manual examination as a predictor of preterm delivery. Am J Obstet Gynecol. 1997; 177: 723 â 730.
dc.identifier.citedreferenceGuzman ER, Mellon C, Vintzileos AM, Ananth CV, Walters C, Gipson K. Longitudinal assessment of endocervical canal length between 15 and 24 weeks’ gestation in women at risk for pregnancy loss or preterm birth. Obstet Gynecol. 1998; 92: 31 â 37.
dc.identifier.citedreferenceTaipale P, Hiilesmaa V. Sonographic measurement of uterine cervix at 18â 22 weeks’ gestation and the risk of preterm delivery. Obstet Gynecol. 1998; 92: 902 â 907.
dc.identifier.citedreferenceAndrews WW, Copper R, Hauth JC, Goldenberg RL, Neely C, Dubard M. Secondâ trimester cervical ultrasound: associations with increased risk for recurrent early spontaneous delivery. Obstet Gynecol. 2000; 95: 222 â 226.
dc.identifier.citedreferenceHibbard JU, Tart M, Moawad AH. Cervical length at 16â 22 weeks’ gestation and risk for preterm delivery. Obstet Gynecol. 2000; 96: 972 â 978.
dc.identifier.citedreferenceOwen J, Yost N, Berghella V, et al. Midâ trimester endovaginal sonography in women at high risk for spontaneous preterm birth. JAMA. 2001; 286: 1340 â 1348.
dc.identifier.citedreferenceDurnwald CP, Walker H, Lundy JC, Iams JD. Rates of recurrent preterm birth by obstetrical history and cervical length. Am J Obstet Gynecol. 2005; 193 ( 3 Pt 2 ): 1170 â 1174.
dc.identifier.citedreferenceGomez R, Romero R, Medina L, et al. Cervicovaginal fibronectin improves the prediction of preterm delivery based on sonographic cervical length in patients with preterm uterine contractions and intact membranes. Am J Obstet Gynecol. 2005; 192: 350 â 359.
dc.identifier.citedreferenceMatijevic R, Grgic O, Vasilj O. Is sonographic assessment of cervical length better than digital examination in screening for preterm delivery in a lowâ risk population? Acta Obstet Gynecol Scand. 2006; 85: 1342 â 1347.
dc.identifier.citedreferenceZhou M, Cool D, Grunwald W, Khamis H, McKenna D. Abstract No.516: Clinical findings in amniotic fluid of women with asymptomatic short cervix in the midtrimester. Am J Obstet Gynecol. 2013; 208: S222.
dc.identifier.citedreferenceRaiche E, Ouellet A, Berthiaume M, Rousseau E, Pasquier JC. Short and inflamed cervix predicts spontaneous preterm birth (COLIBRI study). J Matern Fetal Neonatal Med. 2014; 27: 1015 â 1019.
dc.identifier.citedreferenceMelamed N, Pittini A, Hiersch L, et al. Do serial measurements of cervical length improve the prediction of preterm birth in asymptomatic women with twin gestations? Am J Obstet Gynecol. 2016; 215: 616.e1â 14.
dc.identifier.citedreferenceRomero R, Gomez R, Mazor M, Ghezzi F, Yoon BH. The preterm labor syndrome. In: Elder MG, Romero R, Lamont RF, eds. Preterm Labor. New York, NY: Churchill Livingstone; 1997: 29 â 49.
dc.identifier.citedreferenceRomero R, Espinoza J, Kusanovic JP, et al. The preterm parturition syndrome. BJOG. 2006; 113 ( Suppl 3 ): 17 â 42.
dc.identifier.citedreferenceRomero R, Dey SK, Fisher SJ. Preterm labor: one syndrome, many causes. Science. 2014; 345: 760 â 765.
dc.identifier.citedreferenceLockwood CJ. Risk factors for preterm birth and new approaches to its early diagnosis. J Perinat Med. 2015; 43: 499 â 501.
dc.identifier.citedreferenceHegeleâ Hartung C, Chwalisz K, Beier HM, Elger W. Ripening of the uterine cervix of the guineaâ pig after treatment with the progesterone antagonist onapristone (ZK 98.299): an electron microscopic study. Hum Reprod. 1989; 4: 369 â 377.
dc.identifier.citedreferenceWolf JP, Sinosich M, Anderson TL, Ulmann A, Baulieu EE, Hodgen GD. Progesterone antagonist (RU 486) for cervical dilation, labor induction, and delivery in monkeys: effectiveness in combination with oxytocin. Am J Obstet Gynecol. 1989; 160: 45 â 47.
dc.identifier.citedreferenceNorman J. Antiprogesterones. Br J Hosp Med. 1991; 45: 372 â 375.
dc.identifier.citedreferenceChwalisz K. The use of progesterone antagonists for cervical ripening and as an adjunct to labour and delivery. Hum Reprod. 1994; 9 ( Suppl 1 ): 131 â 161.
dc.identifier.citedreferenceElliott CL, Brennand JE, Calder AA. The effects of mifepristone on cervical ripening and labor induction in primigravidae. Obstet Gynecol. 1998; 92: 804 â 809.
dc.identifier.citedreferenceStenlund PM, Ekman G, Aedo AR, Bygdeman M. Induction of labor with mifepristone â a randomized, doubleâ blind study versus placebo. Acta Obstet Gynecol Scand. 1999; 78: 793 â 798.
dc.identifier.citedreferenceWord RA, Li XH, Hnat M, Carrick K. Dynamics of cervical remodeling during pregnancy and parturition: mechanisms and current concepts. Semin Reprod Med. 2007; 25: 69 â 79.
dc.identifier.citedreferenceTimmons B, Akins M, Mahendroo M. Cervical remodeling during pregnancy and parturition. Trends Endocrinol Metab. 2010; 21: 353 â 361.
dc.identifier.citedreferenceMahendroo M. Cervical remodeling in term and preterm birth: insights from an animal model. Reproduction. 2012; 143: 429 â 438.
dc.identifier.citedreferenceAhn KH, Bae NY, Hong SC, et al. The safety of progestogen in the prevention of preterm birth: metaâ analysis of neonatal mortality. J Perinat Med. 2017; 45: 11 â 20.
dc.identifier.citedreferenceAreia AL, Valeâ Pereira S, Vazâ Ambrosio A, et al. Does progesterone administration in preterm labor influence Treg cells? J Perinat Med. 2016; 44: 605 â 611.
dc.identifier.citedreferenceMoinian M, Andersch B. Does cervix conization increase the risk of complications in subsequent pregnancies? Acta Obstet Gynecol Scand. 1982; 61: 101 â 103.
dc.identifier.citedreferenceBlomfield PI, Buxton J, Dunn J, Luesley DM. Pregnancy outcome after large loop excision of the cervical transformation zone. Am J Obstet Gynecol. 1993; 169: 620 â 625.
dc.identifier.citedreferenceKristensen J, Langhoffâ Roos J, Wittrup M, Bock JE. Cervical conization and preterm delivery/low birth weight. A systematic review of the literature. Acta Obstet Gynecol Scand. 1993; 72: 640 â 644.
dc.identifier.citedreferenceRaio L, Ghezzi F, Di Naro E, Gomez R, Luscher KP. Duration of pregnancy after carbon dioxide laser conization of the cervix: influence of cone height. Obstet Gynecol. 1997; 90: 978 â 982.
dc.identifier.citedreferenceBerghella V, Pereira L, Gariepy A, Simonazzi G. Prior cone biopsy: prediction of preterm birth by cervical ultrasound. Am J Obstet Gynecol. 2004; 191: 1393 â 1397.
dc.identifier.citedreferenceBruinsma FJ, Quinn MA. The risk of preterm birth following treatment for precancerous changes in the cervix: a systematic review and metaâ analysis. BJOG. 2011; 118: 1031 â 1041.
dc.identifier.citedreferenceOrzechowski K, Nicholas S, Berghella V. Abstract No. 504: Does cervical conization increase the risk of a sonographic short cervix in the second trimester of pregnancy? Am J Obstet Gynecol. 2013; 208: S217.
dc.identifier.citedreferenceMiller ES, Grobman WA. The association between cervical excisional procedures, midtrimester cervical length, and preterm birth. Am J Obstet Gynecol. 2014; 211: 242.e1â 4.
dc.identifier.citedreferenceMiller ES, Sakowicz A, Grobman WA. The association between cervical dysplasia, a short cervix, and preterm birth. Am J Obstet Gynecol. 2015; 213: 543.e1â 4.
dc.identifier.citedreferenceRomero R, Gonzalez R, Sepulveda W, et al. Infection and labor. VIII. Microbial invasion of the amniotic cavity in patients with suspected cervical incompetence: prevalence and clinical significance. Am J Obstet Gynecol. 1992; 167 ( 4 Pt 1 ): 1086 â 1091.
dc.identifier.citedreferenceMays JK, Figueroa R, Shah J, Khakoo H, Kaminsky S, Tejani N. Amniocentesis for selection before rescue cerclage. Obstet Gynecol. 2000; 95: 652 â 655.
dc.identifier.citedreferenceHassan S, Romero R, Hendler I, et al. A sonographic short cervix as the only clinical manifestation of intraâ amniotic infection. J Perinat Med. 2006; 34: 13 â 19.
dc.identifier.citedreferenceKiefer DG, Keeler SM, Rust OA, Wayock CP, Vintzileos AM, Hanna N. Is midtrimester short cervix a sign of intraamniotic inflammation? Am J Obstet Gynecol. 2009; 200: 374.e1â 5.
dc.identifier.citedreferenceVaisbuch E, Hassan SS, Mazakiâ Tovi S, et al. Patients with an asymptomatic short cervix (<or=15 mm) have a high rate of subclinical intraamniotic inflammation: implications for patient counseling. Am J Obstet Gynecol. 2010; 202: 433.e1â 8.
dc.identifier.citedreferenceChoi J, Park JW, Kim BJ, Choi YJ, Hwang JH, Lee SM. Funisitis is more common in cervical insufficiency than in preterm labor and preterm premature rupture of membranes. J Perinat Med. 2016; 44: 523 â 529.
dc.identifier.citedreferenceLee SE, Romero R, Park CW, Jun JK, Yoon BH. The frequency and significance of intraamniotic inflammation in patients with cervical insufficiency. Am J Obstet Gynecol. 2008; 198: 633.e1â 8.
dc.identifier.citedreferenceDeFranco EA, O’Brien JM, Adair CD, et al. Vaginal progesterone is associated with a decrease in risk for early preterm birth and improved neonatal outcome in women with a short cervix: a secondary analysis from a randomized, doubleâ blind, placeboâ controlled trial. Ultrasound Obstet Gynecol. 2007; 30: 697 â 705.
dc.identifier.citedreferenceFonseca EB, Celik E, Parra M, Singh M, Nicolaides KH. Progesterone and the risk of preterm birth among women with a short cervix. N Engl J Med. 2007; 357: 462 â 469.
dc.identifier.citedreferenceO’Brien JM, Defranco EA, Adair CD, et al. Effect of progesterone on cervical shortening in women at risk for preterm birth: secondary analysis from a multinational, randomized, doubleâ blind, placeboâ controlled trial. Ultrasound Obstet Gynecol. 2009; 34: 653 â 659.
dc.identifier.citedreferenceHassan SS, Romero R, Vidyadhari D, et al. Vaginal progesterone reduces the rate of preterm birth in women with a sonographic short cervix: a multicenter, randomized, doubleâ blind, placeboâ controlled trial. Ultrasound Obstet Gynecol. 2011; 38: 18 â 31.
dc.identifier.citedreferenceRomero R, Nicolaides K, Condeâ Agudelo A, et al. Vaginal progesterone in women with an asymptomatic sonographic short cervix in the midtrimester decreases preterm delivery and neonatal morbidity: a systematic review and metaanalysis of individual patient data. Am J Obstet Gynecol. 2012; 206: 124.e1â 19.
dc.identifier.citedreferenceCondeâ Agudelo A, Romero R, Nicolaides K, et al. Vaginal progesterone vs. cervical cerclage for the prevention of preterm birth in women with a sonographic short cervix, previous preterm birth, and singleton gestation: a systematic review and indirect comparison metaanalysis. Am J Obstet Gynecol. 2013; 208: 42.e1â 18.
dc.identifier.citedreferenceRomero R, Yeo L, Chaemsaithong P, Chaiworapongsa T, Hassan SS. Progesterone to prevent spontaneous preterm birth. Semin Fetal Neonatal Med. 2014; 19: 15 â 26.
dc.identifier.citedreferenceCondeâ Agudelo A, Romero R. Vaginal progesterone to prevent preterm birth in pregnant women with a sonographic short cervix: clinical and public health implications. Am J Obstet Gynecol. 2016; 214: 235 â 242.
dc.identifier.citedreferenceSuhag A, Saccone G, Berghella V. Vaginal progesterone for maintenance tocolysis: a systematic review and metaanalysis of randomized trials. Am J Obstet Gynecol. 2015; 213: 479 â 487.
dc.identifier.citedreferenceRomero R, Espinoza J, Erez O, Hassan S. The role of cervical cerclage in obstetric practice: can the patient who could benefit from this procedure be identified? Am J Obstet Gynecol. 2006; 194: 1 â 9.
dc.identifier.citedreferenceKeeler SM, Kiefer D, Rochon M, Quinones JN, Novetsky AP, Rust O. A randomized trial of cerclage vs. 17 alphaâ hydroxyprogesterone caproate for treatment of short cervix. J Perinat Med. 2009; 37: 473 â 479.
dc.identifier.citedreferenceOwen J, Hankins G, Iams JD, et al. Multicenter randomized trial of cerclage for preterm birth prevention in highâ risk women with shortened midtrimester cervical length. Am J Obstet Gynecol. 2009; 201: 375.e1â 8.
dc.identifier.citedreferenceBerghella V, Mackeen AD. Cervical length screening with ultrasoundâ indicated cerclage compared with historyâ indicated cerclage for prevention of preterm birth: a metaâ analysis. Obstet Gynecol. 2011; 118: 148 â 155.
dc.identifier.citedreferenceBerghella V, Rafael TJ, Szychowski JM, Rust OA, Owen J. Cerclage for short cervix on ultrasonography in women with singleton gestations and previous preterm birth: a metaâ analysis. Obstet Gynecol. 2011; 117: 663 â 671.
dc.identifier.citedreferenceChildress KS, Flick A, Dickert E, Gavard J, Bolanos R, Gross G. Abstract No 173: A comparison of cervical cerclage and vaginal pessaries in the prevention of spontaneous preterm birth in women with short cervix. Am J Obstet Gynecol. 2015; 212: S101.
dc.identifier.citedreferenceKiefer DG, Peltier MR, Keeler SM, et al. Efficacy of midtrimester short cervix interventions is conditional on intraâ amniotic inflammation. Am J Obstet Gynecol. 2016; 214: 276.e1 â 276.e6.
dc.identifier.citedreferenceVaisbuch E, Romero R, Erez O, et al. Clinical significance of early (< 20 weeks) vs. late (20â 24 weeks) detection of sonographic short cervix in asymptomatic women in the midâ trimester. Ultrasound Obstet Gynecol. 2010; 36: 471 â 481.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Sterile intraâ amniotic inflammation in asymptomatic patients with a sonographic short cervix: prevalence and clinical significance. J Matern Fetal Neonatal Med. 2014; 1 â 17. https://doi.org/10.3109/14767058.2014.954243.
dc.identifier.citedreferenceRomero R, Kadar N, Hobbins JC, Duff GW. Infection and labor: the detection of endotoxin in amniotic fluid. Am J Obstet Gynecol. 1987; 157 ( 4 Pt 1 ): 815 â 819.
dc.identifier.citedreferenceRomero R, Roslansky P, Oyarzun E, et al. Labor and infection. II. Bacterial endotoxin in amniotic fluid and its relationship to the onset of preterm labor. Am J Obstet Gynecol. 1988; 158: 1044 â 1049.
dc.identifier.citedreferenceGravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol. 1994; 171: 1660 â 1667.
dc.identifier.citedreferenceYoon BH, Romero R, Kim CJ, et al. Amniotic fluid interleukinâ 6: a sensitive test for antenatal diagnosis of acute inflammatory lesions of preterm placenta and prediction of perinatal morbidity. Am J Obstet Gynecol. 1995; 172: 960 â 970.
dc.identifier.citedreferenceHitti J, Tarczyâ Hornoch P, Murphy J, Hillier SL, Aura J, Eschenbach DA. Amniotic fluid infection, cytokines, and adverse outcome among infants at 34 weeks’ gestation or less. Obstet Gynecol. 2001; 98: 1080 â 1088.
dc.identifier.citedreferenceRomero R, Gomez R, Chaiworapongsa T, Conoscenti G, Kim JC, Kim YM. The role of infection in preterm labour and delivery. Paediatr Perinat Epidemiol. 2001; 15 ( Suppl 2 ): 41 â 56.
dc.identifier.citedreferenceRomero R, Erez O, Espinoza J. Intrauterine infection, preterm labor, and cytokines. J Soc Gynecol Investig. 2005; 12: 463 â 465.
dc.identifier.citedreferenceRomero R, Espinoza J, Goncalves LF, Kusanovic JP, Friel L, Hassan S. The role of inflammation and infection in preterm birth. Semin Reprod Med. 2007; 25: 21 â 39.
dc.identifier.citedreferenceRomero R, Gotsch F, Pineles B, Kusanovic JP. Inflammation in pregnancy: its roles in reproductive physiology, obstetrical complications, and fetal injury. Nutr Rev. 2007; 65 ( 12 Pt 2 ): S194 â S202.
dc.identifier.citedreferenceRomero R, Mazor M, Wu YK, et al. Infection in the pathogenesis of preterm labor. Semin Perinatol. 1988; 12: 262 â 279.
dc.identifier.citedreferenceRomero R, Sirtori M, Oyarzun E, et al. Infection and labor. V. Prevalence, microbiology, and clinical significance of intraamniotic infection in women with preterm labor and intact membranes. Am J Obstet Gynecol. 1989; 161: 817 â 824.
dc.identifier.citedreferenceGibbs RS, Romero R, Hillier SL, Eschenbach DA, Sweet RL. A review of premature birth and subclinical infection. Am J Obstet Gynecol. 1992; 166: 1515 â 1528.
dc.identifier.citedreferenceWatts DH, Krohn MA, Hillier SL, Eschenbach DA. The association of occult amniotic fluid infection with gestational age and neonatal outcome among women in preterm labor. Obstet Gynecol. 1992; 79: 351 â 357.
dc.identifier.citedreferenceRomero R, Yoon BH, Kenney JS, Gomez R, Allison AC, Sehgal PB. Amniotic fluid interleukinâ 6 determinations are of diagnostic and prognostic value in preterm labor. Am J Reprod Immunol. 1993; 30: 167 â 183.
dc.identifier.citedreferenceRomero R, Galasso M, Gomez R, et al. A comparative study of the value of amniotic fluid interleukinâ 6, white blood cell count and gram stain in the diagnosis of microbial invasion of the amniotic cavity in patients with spontaneous labor at term. Annual Meeting of the Society of Perinatal Obstetricians; Las Vegas, NV; 1994: A250.
dc.identifier.citedreferenceGreci LS, Gilson GJ, Nevils B, Izquierdo LA, Qualls CR, Curet LB. Is amniotic fluid analysis the key to preterm labor? A model using interleukinâ 6 for predicting rapid delivery. Am J Obstet Gynecol. 1998; 179: 172 â 178.
dc.identifier.citedreferenceMaymon E, Romero R, Chaiworapongsa T, et al. Amniotic fluid matrix metalloproteinaseâ 8 in preterm labor with intact membranes. Am J Obstet Gynecol. 2001; 185: 1149 â 1155.
dc.identifier.citedreferenceYoon BH, Romero R, Moon JB, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Obstet Gynecol. 2001; 185: 1130 â 1136.
dc.identifier.citedreferenceJacobsson B, Mattsbyâ Baltzer I, Andersch B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women in preterm labor. Acta Obstet Gynecol Scand. 2003; 82: 120 â 128.
dc.identifier.citedreferenceYoon BH, Romero R, Lim JH, et al. The clinical significance of detecting Ureaplasma urealyticum by the polymerase chain reaction in the amniotic fluid of patients with preterm labor. Am J Obstet Gynecol. 2003; 189: 919 â 924.
dc.identifier.citedreferenceFriel LA, Romero R, Edwin S, et al. The calcium binding protein, S100B, is increased in the amniotic fluid of women with intraâ amniotic infection/inflammation and preterm labor with intact or ruptured membranes. J Perinat Med. 2007; 35: 385 â 393.
dc.identifier.citedreferenceLee SE, Romero R, Jung H, Park CW, Park JS, Yoon BH. The intensity of the fetal inflammatory response in intraamniotic inflammation with and without microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2007; 197: 294.e1â 6.
dc.identifier.citedreferenceDiGiulio DB, Romero R, Amogan HP, et al. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and cultureâ based investigation. PLoS One. 2008; 3: e3056.
dc.identifier.citedreferenceRomero R, Chaiworapongsa T, Alpay Savasan Z, et al. Damageâ associated molecular patterns (DAMPs) in preterm labor with intact membranes and preterm PROM: a study of the alarmin HMGB1. J Matern Fetal Neonatal Med. 2011; 24: 1444 â 1455.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. A novel molecular microbiologic technique for the rapid diagnosis of microbial invasion of the amniotic cavity and intraâ amniotic infection in preterm labor with intact membranes. Am J Reprod Immunol. 2014; 71: 330 â 358.
dc.identifier.citedreferenceRomero R, Miranda J, Chaiworapongsa T, et al. Prevalence and clinical significance of sterile intraâ amniotic inflammation in patients with preterm labor and intact membranes. Am J Reprod Immunol. 2014; 72: 458 â 474.
dc.identifier.citedreferenceRomero R, Quintero R, Oyarzun E, et al. Intraamniotic infection and the onset of labor in preterm premature rupture of the membranes. Am J Obstet Gynecol. 1988; 159: 661 â 666.
dc.identifier.citedreferenceGomez R, Romero R, Edwin SS, David C. Pathogenesis of preterm labor and preterm premature rupture of membranes associated with intraamniotic infection. Infect Dis Clin North Am. 1997; 11: 135 â 176.
dc.identifier.citedreferenceJacobsson B, Mattsbyâ Baltzer I, Andersch B, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2003; 82: 423 â 431.
dc.identifier.citedreferenceShim SS, Romero R, Hong JS, et al. Clinical significance of intraâ amniotic inflammation in patients with preterm premature rupture of membranes. Am J Obstet Gynecol. 2004; 191: 1339 â 1345.
dc.identifier.citedreferenceDiGiulio DB, Romero R, Kusanovic JP, et al. Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm preâ labor rupture of membranes. Am J Reprod Immunol. 2010; 64: 38 â 57.
dc.identifier.citedreferenceRomero R, Miranda J, Chaemsaithong P, et al. Sterile and microbialâ associated intraâ amniotic inflammation in preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28: 1394 â 1409.
dc.identifier.citedreferenceGomez R, Romero R, Nien JK, et al. A short cervix in women with preterm labor and intact membranes: a risk factor for microbial invasion of the amniotic cavity. Am J Obstet Gynecol. 2005; 192: 678 â 689.
dc.identifier.citedreferenceBujold E, Morency AM, Rallu F, et al. Bacteriology of amniotic fluid in women with suspected cervical insufficiency. J Obstet Gynaecol Can. 2008; 30: 882 â 887.
dc.identifier.citedreferenceOh KJ, Lee SE, Jung H, Kim G, Romero R, Yoon BH. Detection of ureaplasmas by the polymerase chain reaction in the amniotic fluid of patients with cervical insufficiency. J Perinat Med. 2010; 38: 261 â 268.
dc.identifier.citedreferenceKim KW, Romero R, Park HS, et al. A rapid matrix metalloproteinaseâ 8 bedside test for the detection of intraamniotic inflammation in women with preterm premature rupture of membranes. Am J Obstet Gynecol. 2007; 197: 292.e1â 5.
dc.identifier.citedreferenceKiefer D, Peltier M, Keeler S, et al. Does intraâ amniotic inflammation influence pregnancy outcome after cerclage or progesterone (17OHPâ C) therapy for midtrimester short cervix? Am J Obstet Gynecol. 2009; 201 ( 6 Suppl ): S61.
dc.identifier.citedreferenceGervasi MT, Romero R, Bracalente G, et al. Midtrimester amniotic fluid concentrations of interleukinâ 6 and interferonâ gammaâ inducible proteinâ 10: evidence for heterogeneity of intraâ amniotic inflammation and associations with spontaneous early (<32 weeks) and late (>32 weeks) preterm delivery. J Perinat Med. 2012; 40: 329 â 343.
dc.identifier.citedreferenceLee SY, Park KH, Jeong EH, Oh KJ, Ryu A, Kim A. Intraâ amniotic infection/inflammation as a risk factor for subsequent ruptured membranes after clinically indicated amniocentesis in preterm labor. J Korean Med Sci. 2013; 28: 1226 â 1232.
dc.identifier.citedreferenceCombs CA, Gravett M, Garite TJ, et al. Amniotic fluid infection, inflammation, and colonization in preterm labor with intact membranes. Am J Obstet Gynecol. 2014; 210: 125.e1â 15.
dc.identifier.citedreferenceRomero R, Kadar N, Miranda J, et al. The diagnostic performance of the mass restricted (MR) score in the identification of microbial invasion of the amniotic cavity or intraâ amniotic inflammation is not superior to amniotic fluid interleukinâ 6. J Matern Fetal Neonatal Med. 2014; 27: 757 â 769.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for the determination of amniotic fluid interleukinâ 6 and the chemokine CXCLâ 10/IPâ 10. J Matern Fetal Neonatal Med. 2015; 28: 1510 â 1519.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A point of care test for interleukinâ 6 in amniotic fluid in preterm prelabor rupture of membranes: a step toward the early treatment of acute intraâ amniotic inflammation/infection. J Matern Fetal Neonatal Med. 2016; 29: 360 â 367.
dc.identifier.citedreferenceChaemsaithong P, Romero R, Korzeniewski SJ, et al. A rapid interleukinâ 6 bedside test for the identification of intraâ amniotic inflammation in preterm labor with intact membranes. J Matern Fetal Neonatal Med. 2016; 29: 349 â 359.
dc.identifier.citedreferenceRomero R, Grivel JC, Tarca AL, et al. Evidence of perturbations of the cytokine network in preterm labor. Am J Obstet Gynecol. 2015; 213: 836.e1 â 836.e18.
dc.identifier.citedreferenceKunze M, Klar M, Morfeld CA, et al. Cytokines in noninvasively obtained amniotic fluid as predictors of fetal inflammatory response syndrome. Am J Obstet Gynecol. 2016; 215: 96.e1â 8.
dc.identifier.citedreferenceRizzo G, Capponi A, Vlachopoulou A, Angelini E, Grassi C, Romanini C. Interleukinâ 6 concentrations in cervical secretions in the prediction of intrauterine infection in preterm premature rupture of the membranes. Gynecol Obstet Invest. 1998; 46: 91 â 95.
dc.identifier.citedreferenceJun JK, Yoon BH, Romero R, et al. Interleukin 6 determinations in cervical fluid have diagnostic and prognostic value in preterm premature rupture of membranes. Am J Obstet Gynecol. 2000; 183: 868 â 873.
dc.identifier.citedreferenceJacobsson B, Holst RM, Mattsbyâ Baltzer I, Nikolaitchouk N, Wennerholm UB, Hagberg H. Interleukinâ 18 in cervical mucus and amniotic fluid: relationship to microbial invasion of the amniotic fluid, intraâ amniotic inflammation and preterm delivery. BJOG. 2003; 110: 598 â 603.
dc.identifier.citedreferenceJacobsson B, Holst RM, Wennerholm UB, Andersson B, Lilja H, Hagberg H. Monocyte chemotactic proteinâ 1 in cervical and amniotic fluid: relationship to microbial invasion of the amniotic cavity, intraâ amniotic inflammation, and preterm delivery. Am J Obstet Gynecol. 2003; 189: 1161 â 1167.
dc.identifier.citedreferenceHolst RM, Mattsbyâ Baltzer I, Wennerholm UB, Hagberg H, Jacobsson B. Interleukinâ 6 and interleukinâ 8 in cervical fluid in a population of Swedish women in preterm labor: relationship to microbial invasion of the amniotic fluid, intraâ amniotic inflammation, and preterm delivery. Acta Obstet Gynecol Scand. 2005; 84: 551 â 557.
dc.identifier.citedreferenceJacobsson B, Mattsbyâ Baltzer I, Hagberg H. Interleukinâ 6 and interleukinâ 8 in cervical and amniotic fluid: relationship to microbial invasion of the chorioamniotic membranes. BJOG. 2005; 112: 719 â 724.
dc.identifier.citedreferenceHolst RM, Laurini R, Jacobsson B, et al. Expression of cytokines and chemokines in cervical and amniotic fluid: relationship to histological chorioamnionitis. J Matern Fetal Neonatal Med. 2007; 20: 885 â 893.
dc.identifier.citedreferenceChandiramani M, Seed PT, Orsi NM, et al. Limited relationship between cervicoâ vaginal fluid cytokine profiles and cervical shortening in women at high risk of spontaneous preterm birth. PLoS One. 2012; 7: e52412.
dc.identifier.citedreferenceCobo T, Jacobsson B, Kacerovsky M, et al. Systemic and local inflammatory response in women with preterm prelabor rupture of membranes. PLoS One. 2014; 9: e85277.
dc.identifier.citedreferenceCombs CA, Garite TJ, Lapidus JA, et al. Detection of microbial invasion of the amniotic cavity by analysis of cervicovaginal proteins in women with preterm labor and intact membranes. Am J Obstet Gynecol. 2015; 212: 482.e1â 12.
dc.identifier.citedreferenceHadziâ Lega M, Markova AD, Stefanovic M, Tanturovski M. Correlation of cervical length, fetal fibronectin, phIGFBPâ 1, and cytokines in spontaneous preterm birth up to 14 days from sampling. J Perinat Med. 2015; 43: 545 â 551.
dc.identifier.citedreferenceKacerovsky M, Musilova I, Jacobsson B, et al. Cervical fluid ILâ 6 and ILâ 8 levels in pregnancies complicated by preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med. 2015; 28: 134 â 140.
dc.identifier.citedreferenceOltvai ZN, Barabasi AL. Systems biology. Life’s complexity pyramid. Science. 2002; 298: 763 â 764.
dc.identifier.citedreferenceBarabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 2004; 5: 101 â 113.
dc.identifier.citedreferenceKlemm K, Bornholdt S. Topology of biological networks and reliability of information processing. Proc Natl Acad Sci USA. 2005; 102: 18414 â 18419.
dc.identifier.citedreferenceDong J, Horvath S. Understanding network concepts in modules. BMC Syst Biol. 2007; 1: 24.
dc.identifier.citedreferenceSchadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009; 461: 218 â 223.
dc.identifier.citedreferenceLiu R, Wang X, Aihara K, Chen L. Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers. Med Res Rev. 2014; 34: 455 â 478.
dc.identifier.citedreferenceMenche J, Sharma A, Kitsak M, et al. Disease networks. Uncovering diseaseâ disease relationships through the incomplete interactome. Science. 2015; 347: 1257601.
dc.identifier.citedreferenceOrsi NM, Tribe RM, Cytokine networks and the regulation of uterine function in pregnancy and parturition. J Neuroendocrinol. 2008; 20: 462 â 469
dc.identifier.citedreferenceKitano H. Systems biology: a brief overview. Science. 2002; 295: 1662 â 1664.
dc.identifier.citedreferenceChen L, Wang R, Zhang X. Biomolecular Networks: Methods and Application in Systems Biology. Hoboken, NJ: John Wiley and Sons; 2009: 391.
dc.identifier.citedreferenceLiu ZP, Wang Y, Zhang XS, Chen L. Networkâ based analysis of complex diseases. IET Syst Biol. 2012; 6: 22 â 33.
dc.identifier.citedreferenceKiefer DG, Keeler SM, Rust O, et al. Amniotic fluid inflammatory score is associated with pregnancy outcome in patients with mid trimester short cervix. Am J Obstet Gynecol. 2012; 206: 68.e1â 6.
dc.identifier.citedreferenceBowen JM, Chamley L, Keelan JA, Mitchell MD. Cytokines of the placenta and extraâ placental membranes: roles and regulation during human pregnancy and parturition. Placenta. 2002; 23: 257 â 273.
dc.identifier.citedreferenceSegal E, Friedman N, Kaminski N, Regev A, Koller D. From signatures to models: understanding cancer using microarrays. Nat Genet. 2005; 37 ( Suppl ): S38 â S45.
dc.identifier.citedreferenceOrsi NM. Cytokine networks in the establishment and maintenance of pregnancy. Hum Fertil (Camb). 2008; 11: 222 â 230.
dc.identifier.citedreferenceKeeler SM, Kiefer DG, Rust OA, et al. Comprehensive amniotic fluid cytokine profile evaluation in women with a short cervix: which cytokine(s) correlates best with outcome? Am J Obstet Gynecol. 2009; 201: 276.e1â 6.
dc.identifier.citedreferenceSlavov N, Dawson KA. Correlation signature of the macroscopic states of the gene regulatory network in cancer. Proc Natl Acad Sci USA. 2009; 106: 4079 â 4084.
dc.identifier.citedreferenceTaylor IW, Linding R, Wardeâ Farley D, et al. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009; 27: 199 â 204.
dc.identifier.citedreferencePinheiro MB, Martinsâ Filho OA, Mota AP, et al. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine. 2013; 62: 165 â 173.
dc.identifier.citedreferenceGibbs RS, Blanco JD, St Clair PJ, Castaneda YS. Quantitative bacteriology of amniotic fluid from women with clinical intraamniotic infection at term. J Infect Dis 1982; 145: 1 â 8.
dc.identifier.citedreferenceYoon BH, Romero R, Park JS, et al. The relationship among inflammatory lesions of the umbilical cord (funisitis), umbilical cord plasma interleukin 6 concentration, amniotic fluid infection, and neonatal sepsis. Am J Obstet Gynecol. 2000; 183: 1124 â 1129.
dc.identifier.citedreferencePark JS, Romero R, Yoon BH, et al. The relationship between amniotic fluid matrix metalloproteinaseâ 8 and funisitis. Am J Obstet Gynecol. 2001; 185: 1156 â 1161.
dc.identifier.citedreferencePacora P, Chaiworapongsa T, Maymon E, et al. Funisitis and chorionic vasculitis: the histological counterpart of the fetal inflammatory response syndrome. J Matern Fetal Neonatal Med. 2002; 11: 18 â 25.
dc.identifier.citedreferenceYoon BH, Romero R, Shim JY, Shim SS, Kim CJ, Jun JK. Câ reactive protein in umbilical cord blood: a simple and widely available clinical method to assess the risk of amniotic fluid infection and funisitis. J Matern Fetal Neonatal Med. 2003; 14: 85 â 90.
dc.identifier.citedreferenceRedline RW, Heller D, Keating S, Kingdom J. Placental diagnostic criteria and clinical correlation â a workshop report. Placenta. 2005; 26 ( Suppl A ): S114 â S117.
dc.identifier.citedreferenceLee SE, Romero R, Kim CJ, Shim SS, Yoon BH. Funisitis in term pregnancy is associated with microbial invasion of the amniotic cavity and intraâ amniotic inflammation. J Matern Fetal Neonatal Med. 2006; 19: 693 â 697.
dc.identifier.citedreferenceRedline RW. Inflammatory responses in the placenta and umbilical cord. Semin Fetal Neonatal Med. 2006; 11: 296 â 301.
dc.identifier.citedreferencePark CW, Lee SM, Park JS, Jun JK, Romero R, Yoon BH. The antenatal identification of funisitis with a rapid MMPâ 8 bedside test. J Perinat Med. 2008; 36: 497 â 502.
dc.identifier.citedreferenceKim CJ, Romero R, Chaemsaithong P, Chaiyasit N, Yoon BH, Kim YM. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. Am J Obstet Gynecol. 2015; 213 ( 4 Suppl ): S29 â S52.
dc.identifier.citedreferenceRomero R, Ceska M, Avila C, Mazor M, Behnke E, Lindley I. Neutrophil attractant/activating peptideâ 1/interleukinâ 8 in term and preterm parturition. Am J Obstet Gynecol. 1991; 165 ( 4 Pt 1 ): 813 â 820.
dc.identifier.citedreferenceCherouny PH, Pankuch GA, Romero R, et al. Neutrophil attractant/activating peptideâ 1/interleukinâ 8: association with histologic chorioamnionitis, preterm delivery, and bioactive amniotic fluid leukoattractants. Am J Obstet Gynecol. 1993; 169: 1299 â 1303.
dc.identifier.citedreferenceGhezzi F, Gomez R, Romero R, et al. Elevated interleukinâ 8 concentrations in amniotic fluid of mothers whose neonates subsequently develop bronchopulmonary dysplasia. Eur J Obstet Gynecol Reprod Biol. 1998; 78: 5 â 10.
dc.identifier.citedreferenceRomero R, Chaemsaithong P, Korzeniewski SJ, et al. Clinical chorioamnionitis at term II: the intraâ amniotic inflammatory response. J Perinat Med. 2016; 44: 5 â 22.
dc.identifier.citedreferenceZeilhofer HU, Schorr W. Role of interleukinâ 8 in neutrophil signaling. Curr Opin Hematol. 2000; 7: 178 â 182.
dc.identifier.citedreferenceMaurer M, von Stebut E. Macrophage inflammatory proteinâ 1. Int J Biochem Cell Biol. 2004; 36: 1882 â 1886.
dc.identifier.citedreferenceMukaida N. Interleukinâ 8: an expanding universe beyond neutrophil chemotaxis and activation. Int J Hematol. 2000; 72: 391 â 398.
dc.identifier.citedreferenceGonzálezâ Bosquet E, Cerqueira MJ, Dominguez C, Gasser I, Bermejo B, Cabero L. Amniotic fluid glucose and cytokines values in the early diagnosis of amniotic infection in patients with preterm labor and intact membranes. J Matern Fetal Med. 1999; 8: 155 â 158.
dc.identifier.citedreferenceArntzen KJ, Kjollesdal AM, Halgunset J, Vatten L, Austgulen R. TNF, ILâ 1, ILâ 6, ILâ 8 and soluble TNF receptors in relation to chorioamnionitis and premature labor. J Perinat Med. 1998; 26: 17 â 26.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, Copel JA. The role of amniotic fluid Lâ selectin, GROâ alpha, and interleukinâ 8 in the pathogenesis of intraamniotic infection. Am J Obstet Gynecol. 1998; 178: 428 â 432.
dc.identifier.citedreferenceHsu CD, Meaddough E, Aversa K, et al. Elevated amniotic fluid levels of leukemia inhibitory factor, interleukin 6, and interleukin 8 in intraâ amniotic infection. Am J Obstet Gynecol. 1998; 179: 1267 â 1270.
dc.identifier.citedreferenceFigueroa R, Garry D, Elimian A, Patel K, Sehgal PB, Tejani N. Evaluation of amniotic fluid cytokines in preterm labor and intact membranes. J Matern Fetal Neonatal Med. 2005; 18: 241 â 247.
dc.identifier.citedreferenceWitt A, Berger A, Gruber CJ, Petricevic L, Apfalter P, Husslein P. ILâ 8 concentrations in maternal serum, amniotic fluid and cord blood in relation to different pathogens within the amniotic cavity. J Perinat Med. 2005; 33: 22 â 26.
dc.identifier.citedreferenceRomero R, Gomez R, Galasso M, Munoz H, Acosta L, Yoon BH, Svinarich D, Cotton DB. Macrophage inflammatory proteinâ 1 alpha in term and preterm parturition: effect of microbial invasion of the amniotic cavity. Am J Reprod Immunol. 1994; 32: 108 â 113.
dc.identifier.citedreferenceSherry B, Tekampâ Olson P, Gallegos C, et al. Resolution of the two components of macrophage inflammatory protein 1, and cloning and characterization of one of those components, macrophage inflammatory protein 1 beta. J Exp Med. 1988; 168: 2251 â 2259.
dc.identifier.citedreferenceWolpe SD, Davatelis G, Sherry B, et al. Macrophages secrete a novel heparinâ binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med. 1988; 167: 570 â 581.
dc.identifier.citedreferenceSaukkonen K, Sande S, Cioffe C, et al. The role of cytokines in the generation of inflammation and tissue damage in experimental gramâ positive meningitis. J Exp Med. 1990; 171: 439 â 448.
dc.identifier.citedreferenceAlam R, Forsythe PA, Stafford S, Lettâ Brown MA, Grant JA. Macrophage inflammatory proteinâ 1 alpha activates basophils and mast cells. J Exp Med. 1992; 176: 781 â 786.
dc.identifier.citedreferenceChristman JW, Blackwell TR, Cowan HB, Shepherd VL, Rinaldo JE. Endotoxin induces the expression of macrophage inflammatory protein 1 alpha mRNA by rat alveolar and bone marrowâ derived macrophages. Am J Respir Cell Mol Biol. 1992; 7: 455 â 461.
dc.identifier.citedreferenceRot A, Krieger M, Brunner T, Bischoff SC, Schall TJ, Dahinden CA. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med. 1992; 176: 1489 â 1495.
dc.identifier.citedreferenceSchall TJ, Bacon K, Camp RD, Kaspari JW, Goeddel DV. Human macrophage inflammatory protein alpha (MIPâ 1 alpha) and MIPâ 1 beta chemokines attract distinct populations of lymphocytes. J Exp Med. 1993; 177: 1821 â 1826.
dc.identifier.citedreferenceWang JM, Sherry B, Fivash MJ, Kelvin DJ, Oppenheim JJ. Human recombinant macrophage inflammatory proteinâ 1 alpha and â beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes. J Immunol. 1993; 150: 3022 â 3029.
dc.identifier.citedreferenceDudley DJ, Hunter C, Mitchell MD, Varner MW. Elevations of amniotic fluid macrophage inflammatory proteinâ 1 alpha concentrations in women during term and preterm labor. Obstet Gynecol. 1996; 87: 94 â 98.
dc.identifier.citedreferenceRamos CD, Canetti C, Souto JT, Silva JS, Hogaboam CM, Ferreira SH, Cunha FQ. MIPâ 1alpha[CCL3] acting on the CCR1 receptor mediates neutrophil migration in immune inflammation via sequential release of TNFâ alpha and LTB4. J Leukoc Biol. 2005; 78: 167 â 177.
dc.identifier.citedreferenceRomero R, Avila C, Santhanam U, Sehgal PB. Amniotic fluid interleukin 6 in preterm labor. Association with infection. J Clin Invest. 1990; 85: 1392 â 1400.
dc.identifier.citedreferenceRomero R, Sepulveda W, Kenney JS, Archer LE, Allison AC, Sehgal PB. Interleukin 6 determination in the detection of microbial invasion of the amniotic cavity. Ciba Found Symp. 1992; 167: 205 â 220; discussion 20â 3.
dc.identifier.citedreferenceMarconi C, de Andrade Ramos BR, Peracoli JC, Donders GG, da Silva MG. Amniotic fluid interleukinâ 1 beta and interleukinâ 6, but not interleukinâ 8 correlate with microbial invasion of the amniotic cavity in preterm labor. Am J Reprod Immunol. 2011; 65: 549 â 556.
dc.identifier.citedreferenceKacerovsky M, Drahosova M, Hornychova H, et al. Value of amniotic fluid interleukinâ 8 for the prediction of histological chorioamnionitis in preterm premature rupture of membranes. Neuro Endocrinol Lett. 2009; 30: 733 â 738.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.