Show simple item record

Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome

dc.contributor.authorEason, Jessica
dc.contributor.authorWilliams, Antionette L.
dc.contributor.authorChawla, Bahaar
dc.contributor.authorApsey, Christian
dc.contributor.authorBohnsack, Brenda L.
dc.date.accessioned2017-10-05T18:20:07Z
dc.date.available2018-12-03T15:34:04Zen
dc.date.issued2017-09-01
dc.identifier.citationEason, Jessica; Williams, Antionette L.; Chawla, Bahaar; Apsey, Christian; Bohnsack, Brenda L. (2017). "Differences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome." Birth Defects Research 109(15): 1212-1227.
dc.identifier.issn2472-1727
dc.identifier.issn2472-1727
dc.identifier.urihttps://hdl.handle.net/2027.42/138404
dc.publisherCRC Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherethanol
dc.subject.otherfetal alcohol syndrome
dc.subject.otherneural crest
dc.subject.othercongenital eye disease
dc.subject.othereye development
dc.subject.otheranterior segment
dc.subject.othersuperoxide dismutase
dc.titleDifferences in neural crest sensitivity to ethanol account for the infrequency of anterior segment defects in the eye compared with craniofacial anomalies in a zebrafish model of fetal alcohol syndrome
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138404/1/bdr21069.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138404/2/bdr21069_am.pdf
dc.identifier.doi10.1002/bdr2.1069
dc.identifier.sourceBirth Defects Research
dc.identifier.citedreferencePei YF, Rhodin JA. 1970. The prenatal development of the mouse eye. Anat Rec 168: 105 – 125.
dc.identifier.citedreferenceRibeiro IM, Vale PJ, Tenedorio PA, et al. 2007. Ocular manifestations in fetal alcohol syndrome. Eur J Ophthalmol 17: 104 – 109.
dc.identifier.citedreferenceRiley EP, Infante MA, Warren KR. 2011. Fetal alcohol spectrum disorders: an overview. Neuropsychol Rev 21: 73 – 80.
dc.identifier.citedreferenceRossett HL. 1980. A clinical perspective of the fetal alcohol syndrome. Alcohol Clin Exp Res 4: 119 – 122.
dc.identifier.citedreferenceSampson PD, Streissguth AP, Bookstein FL, et al. 1997. Incidence of fetal alcohol syndrome and prevalence of alcohol‐related neurodevelopmental disorder. Teratology 56: 317 – 326.
dc.identifier.citedreferenceSchoner K, Kohlhase J, Müller AM, et al. 2013. Hydrocephalus, agenesis of the corpus callosum, and cleft lip/palate represent frequent associations in fetuses with Peters plus syndrome and B3GALTL mutations. Fetal PPS phenotypes, expanded by Dandy Walker cyst and encephalocele. Prenat Diagn 33: 75 – 80.
dc.identifier.citedreferenceSkarie JM, Link BA. 2009. FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis. Invest Ophthalmol Vis Sci 50: 5026 – 5034.
dc.identifier.citedreferenceSmith SM, Garic A, Flentke GR, Berres ME. 2014. Neural crest development in fetal alcohol syndrome. Birth Defects Res Part C Embryol Today 102: 210 – 220.
dc.identifier.citedreferenceSokol RJ. 2003. Fetal alcohol syndrome disorder. JAMA 290: 2996 – 2999.
dc.identifier.citedreferenceStewart RA, Arduini BL, Berghmans S, et al. 2006. Zebrafish foxd3 is selectively required for neural crest specification, migration and survival. Dev Biol 292: 174 – 188.
dc.identifier.citedreferenceStromland K. 1987. Ocular involvement in the fetal alcohol syndrome. Surv Ophthalmol 31: 277 – 284.
dc.identifier.citedreferenceStromland K, Pinazo‐Duran MD. 2002. Ophthalmic involvement in the fetal alcohol syndrome: clinical and animal model studies. Alcohol Alcohol 37: 2 – 8.
dc.identifier.citedreferenceStromland K, Ventura LO, Mirzaei L, et al. 2015. Fetal alcohol spectrum disorders among children in Brazilian orphanage. Birth Defects Res Part A Clin Mol Teratol 103: 178 – 185.
dc.identifier.citedreferenceStrungaru MH, Dinu I, Walter MA. 2007. Genotype‐phenotype correlations in Axenfeld‐Rieger malformation and glaucoma patients with FOXC1 and PITX2 mutations. Invest Ophthalmol Vis Sci 48: 228 – 237.
dc.identifier.citedreferenceSulik KK, Johnson MC, Webb MA. 1981. Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214: 936 – 938.
dc.identifier.citedreferenceSulik KK, Lauder JM, Dehart DB. 1984. Brain malformations in prenatal mice following acute maternal ethanol administration. Int J Dev Neurosci 2: 203 – 214.
dc.identifier.citedreferenceSuzuki R, Shintani T, Sakuta H, et al. 2000. Identification of RALDH‐3 a novel retinaldehyde dehydrogenase, expressed in the ventral region of the retina. Mech Dev 98: 37 – 50.
dc.identifier.citedreferenceTolosa EJ, Fernández‐Zapico ME, Battiato NL, Rovasio RA. 2016. Sonic hedgehog is a chemotatic neural crest cell guide that is perturbed by ethanol exposure. Eur J Cell Biol 95: 136 – 152.
dc.identifier.citedreferenceTrainor PA. 2005. Specification of neural crest cell formation and migration in mouse embryos. Sem Cell Dev Biol 16: 683 – 693.
dc.identifier.citedreferenceTrainor PA, Tam PPL. 1995. Cranial paraxial mesoderm and neural crest cells of the mouse embryo‐codistribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121: 2569 – 2582.
dc.identifier.citedreferenceTumer Z, Bach‐Holm D. 2009. Axenfeld‐Rieger syndrome and spectrum of Pitx2 and Foxc1 mutations. Eur J Hum Genet 17: 1527 – 1539.
dc.identifier.citedreferenceVidela LA, Fraga CG, Koch OR, Boveris A. 1983. Chemiluminescence of the in situ rat liver after acute ethanol intoxication. Effect of (+)‐cyanidanol‐3. Biochem Pharmacol 32: 2822 – 2825.
dc.identifier.citedreferenceWentzel P, Eriksson UJ. 2006. Ethanol‐induced fetal dysmorphogenesis in the mouse is diminished by high antioxidative capacity of the mother. Toxicol Sci 92: 416 – 422.
dc.identifier.citedreferenceWilliams AL, Eason J, Chawla B, Bohnsack BL. 2017. Cyp1b1 regulates ocular fissure closure through a retinoic acid‐independent pathway. Invest Ophthalmol Vis Sci 58: 1084 – 1097.
dc.identifier.citedreferenceZhang C, Anderson A, Cole GJ. 2016. Analysis of crosstalk between retinoic acid and sonic hedgehog pathways following ethanol exposure in embryonic zebrafish. Birth Defects Res Part A 103: 1046 – 1067.
dc.identifier.citedreferenceZhang C, Frazier JM, Chen H, et al. 2014. Molecular and morphological changes in zebrafish following transient ethanol exposure during defined developmental stages. Neurotoxicol Teratol 44: 70 – 80.
dc.identifier.citedreferenceAbdelrahman A, Conn R. 2009. Eye abnormalities in fetal alcohol syndrome. Ulster Med J 78: 164 – 165.
dc.identifier.citedreferenceAliferis K, Marsal C, Pelletier V, et al. 2010. A novel nonsense B3GALTL mutation confirms Peters plus syndrome in a patient with multiple malformations and Peters anomaly. Ophthalmic Genet 31: 205 – 208.
dc.identifier.citedreferenceBarthel LK, Raymond PA. 2000. In situ hybridization studies of retinal neurons. Methods Enzymol 316: 579 – 590.
dc.identifier.citedreferenceBerry FB, Skarie JM, Mirzayans F, et al. 2008. FOXC1 is required for cell viability and resistance to oxidative stress in the eye through the transcriptional regulation of FOXO1A. Hum Mol Genet 17: 490 – 505
dc.identifier.citedreferenceBohnsack BL, Gallina D, Kahana A. 2011a. Phenothiourea sensitizes zebrafish cranial neural crest and extraocular muscle developmnt to changes in retinoic acid and insulin‐like growth factor signaling. PLoS One 6: e22991.
dc.identifier.citedreferenceBohnsack BL, Gallina D, Thompson H, et al. 2011b. Development of extraocular muscles require early signals from periocular neural crest and the developing eye. Arch Ophthalmol 129: 1030 – 1041.
dc.identifier.citedreferenceBohnsack BL, Kahana A. 2013. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Dev Biol 373: 300 – 309.
dc.identifier.citedreferenceBohnsack BL, Kasprick D, Kish PE, et al. 2012. A zebrafish model of Axenfeld‐Rieger Syndrome reveals that pitx2 regulation by retinoic acid is essential for ocular and craniofacial development. Invest Ophthalmol Vis Sci 53: 7 – 22.
dc.identifier.citedreferenceBrennan D, Giles S. 2014. Ocular involvement in fetal alcohol spectrum disorder: a review. Curr Pharm Des 20: 5377 – 5387.
dc.identifier.citedreferenceChan T, Bowell R, O’Keefe M, Lanigan B. 1991. Ocular manifestations in fetal alcohol syndrome. Br J Ophthalmol 75: 524 – 526.
dc.identifier.citedreferenceChawla B, Schley E, Williams AL, Bohnsack BL. 2016. Retinoic acid and pitx2 regulate early neural crest survival and migration in craniofacial and ocular development. Birth Defects Res B Dev Reprod Toxicol 107: 126 – 135..
dc.identifier.citedreferenceChen SY, Periasamy A, Yang B, et al. 2000. Differential sensitivity of mouse neural crest cells to ethanol‐induced toxicity. Alcohol 20: 75 – 81.
dc.identifier.citedreferenceChen SY, Sulik KK. 1996. Free radical and ethanol‐induced cytotoxicity in neural crest cells. Alcohol Clin Exp Res 20: 1071 – 1076.
dc.identifier.citedreferenceChu J, Tong M, de la Monte SM. 2007. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol 113: 659 – 673.
dc.identifier.citedreferenceClarren SK, Alvord ECJ, Sumi SM, et al. 1978. Brain malformations related to prenatal exposure to ethanol. J Pediatr 92: 64 – 67.
dc.identifier.citedreferenceCook C, Nowotny AZ, Sulik KK. 1987. Fetal alcohol syndrome. Eye malformations in a mouse model. Arch Ophthalmol 105: 1576 – 1580.
dc.identifier.citedreferenceCreuzet S, Vincent C, Couly G. 2005. Neural crest derivatives in ocular and periocular structures. Int J Dev Biol 49: 161 – 171.
dc.identifier.citedreferenceCurran K, Raible DW, Lister JA. 2009. Foxd3 controls melanophore specification in the zebrafish neual crest by regulation of Mitf. Dev Biol 332: 408 – 417.
dc.identifier.citedreferenceDavis WL, Crawford LA, Cooper OJ, et al. 1990. Ethanol induces the generation of reactive free radicals by neural crest cells in vitro. J Craniofac Genet Dev Biol 10: 288 – 293.
dc.identifier.citedreferenceDeltour L, Ang HL, Duester G. 1996. Ethanol inhibition of retinoic acid synthesis as a potential mechanism for fetal alcohol syndrome. FASEB J 10: 1050 – 1057.
dc.identifier.citedreferenceDougherty M, Kamel G, Shubinets V, et al. 2012. Embryonic fate map of first pharyngeal arch structures in the sox10:kaede zebrafish transgenic model. J Craniofac Surg 23: 1333 – 1337.
dc.identifier.citedreferenceDressler S, Meyer‐Marcotty P, Weisschuh N, et al. 2010. Dental and craniofacial anomalies associated wth Axenfeld‐Rieger syndrome with PITX2 mutation. Case Report Med 2010: 621984.
dc.identifier.citedreferenceDunty WCJ, Zucker RM, Sulik KK. 2002. Hindbrain and cranial nerve dysmorphogenesis result from acute maternal ethanol administration. Dev Neurosci 24: 328 – 342.
dc.identifier.citedreferenceDupe V, Ghyselinck NB, Wendling O, et al. 1999. Key roles of retinoic acid receptors alpha and beta in the patterning of the caudal hindbrain, pharyngeal arches and otocystin the mouse. Development 126: 5051 – 5059.
dc.identifier.citedreferenceDutton K, Dutton JR, Pauliny A, Kelsh RN. 2001a. A morpholino phenocopy of the colourless mutant. Genesis 30: 188 – 189.
dc.identifier.citedreferenceDutton KA, Pauliny A, Lopes SS, et al. 2001b. Zebrafish colourless encodes sox10 and specifies non‐ectomesenchymal neural crest fates. Development 128: 4113 – 4125.
dc.identifier.citedreferenceEdward DP, Li J, Sawaguchi S, et al. 1993. Diffuse corneal clouding in siblings with fetal alcohol syndrome. Am J Ophthalmol 15: 484 – 493.
dc.identifier.citedreferenceEvans AL, Gage PJ. 2005. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum Mol Genet 14: 3347 – 3359.
dc.identifier.citedreferenceFlentke GR, Garic A, Amberger E, et al. 2011. Calcium‐mediated repression of beta‐catenin and its transcriptional signaling mediates neural crest cell death in an avian model of fetal alcohol syndrome. Birth Defects Res A Clin Mol Teratol 91: 591 – 602.
dc.identifier.citedreferenceFloyd RA, Carney JM. 1992. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32 ( Suppl ): S22 – S27.
dc.identifier.citedreferenceForoud T, Wetherill L, Vinci‐Booher S, et al. 2012. Relation over time between facial measurements and cognitive outcomes in fetal alcohol‐exposed children. Alcohol Clin Exp Res 36: 1634 – 1646.
dc.identifier.citedreferenceGage PJ, Rhoades W, Prucka SK, Hjalt T. 2005. Fate maps of neural crest and mesoderm in the mammalian eye. Invest Ophthalmol Vis Sci 46: 4200 – 4208.
dc.identifier.citedreferenceGage PJ, Suh H, Camper SA. 1999. Dosage requirement of Pitx2 for development of multiple organs. Development 126: 4643 – 4651.
dc.identifier.citedreferenceGaric A, Flentke GR, Amberger E, et al. 2011. CaMKII activation is a novel effector of alcohol’s neurotoxicity in neural crest stem/progenitor cells. J Neurochem 118: 646 – 657.
dc.identifier.citedreferenceGaric‐Stankovic A, Hernandez M, Flentke GR, Smith SM. 2005. Ethanol triggers neural crest apoptosis through the selective activation of a pertussis toxin‐sensitive G protein and a phospholipase C‐beta‐dependent Ca2+ transient. Alcohol Clin Exp Res 29: 1237 – 1246.
dc.identifier.citedreferenceGummel K, Ygge J. 2013. Ophthalmologic findings in Russian children with fetal alcohol syndrome. Eur J Ophthalmol 23: 823 – 830.
dc.identifier.citedreferenceHay ED, Revel JP. 1969. Fine structure of the developing avian cornea. Monogr Dev Biol 1: 1 – 144.
dc.identifier.citedreferenceHeaton MB, Mitchell JJ, Paiva M. 2000. Amelioration of ethanol‐induced neurotoxicity in the neonatal rat central nervous system by antioxidant therapy. Alcohol Clin Exp Res 24: 512 – 518.
dc.identifier.citedreferenceHeaton MB, Paiva M, Mayer J, Miller R. 2002. Ethanol‐mediated generation of reactive oxygen species in developing rat cerebellum. Neurosci Lett 334: 83 – 86.
dc.identifier.citedreferenceHenderson GI, Devi GB, Perez A, Schenker S. 1995. In utero ethanol exposure elicits oxidative stress in the rat fetus. Alcohol Clin Exp Res 19: 714 – 720.
dc.identifier.citedreferenceHonoré SM, Aybar MJ, Mayor R. 2003. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev Biol 260: 79 – 96.
dc.identifier.citedreferenceHoyme HE, May PA, Kalberg WO, et al. 2005. A practical clinical approach to diagnosis of fetal alcohol syndrome disorders: clarification of the 1996 institute of medicine criteria. Pediatrics 115: 39 – 47.
dc.identifier.citedreferenceJohnston MC. 1966. A radioautographic study of the migration and fat of cranial neural crest cells in the chick embryo. Anat Rec 156: 143 – 155.
dc.identifier.citedreferenceJohnston MC, Noden DM, Hazelton RD, et al. 1979. Origins of avian ocular and periocular tissues. Exp Eye Res 29: 27 – 43.
dc.identifier.citedreferenceJones KL, Smith DW, Ulleland CN, Streissguth P. 1973. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet 1: 1267 – 1271.
dc.identifier.citedreferenceJoya X, Garcia‐Algar O, Salat‐Batlle J, et al. 2015. Advances in the development of novel antioxidant therapies as an approach for fetal alcohol syndrome prevention. Birth Defects Res Part A Clin Mol Teratol 103: 163 – 177.
dc.identifier.citedreferenceJoya X, Garcia‐Algar O, Vall O, Pujades C. 2014. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD. PLoS One 9: e112851.
dc.identifier.citedreferenceKajimura S, Aida K, Duan C. 2005. Insulin‐like growth factor‐binding protein‐1 (IGFBP‐1) mediates hypoxia‐induced embryonic growth and developmental retardation. Proc Natl Acad Sci U S A 102: 1240 – 1245.
dc.identifier.citedreferenceKiecker C. 2016. The chick embryo as a model for the effects of prenatal exposure to alcohol on craniofacial development. Dev Biol 415: 314 – 325.
dc.identifier.citedreferenceKimmel CB, Ballard WW, Kimmel SR, et al. 1995. Stages of embryonic development of the zebrafish. Dev Dyn 203: 253 – 310.
dc.identifier.citedreferenceKlingenberg CP, Wetherill L, Rogers J, et al. 2010. Prenatal alcohol exposure alters the patterns of facial asymmetry. Alcohol 44: 649 – 657.
dc.identifier.citedreferenceKoch OR, De Leo ME, Borrello S, et al. 1994. Ethanol treatment up‐regulates the expression of mitochondrial manganese superoxide dismutase activity in rat liver. Biochem Biophys Res Commun 201: 1356 – 1365.
dc.identifier.citedreferenceKoch OR, Farre S, De Leo ME, et al. 2000. Regulation of manganese superoxide dismutase (Mn‐SOD) in chronic‐experimenal alcoholism: effects of vitamin E‐supplemented and deficient diets. Alcohol Alcohol 35: 159 – 163.
dc.identifier.citedreferenceKoch OR, Galeotti T, Bartoli GM, Boveris A. 1991. Alcohol‐induced oxidative stress in rat liver. Xenobiotica 21: 1077 – 1084.
dc.identifier.citedreferenceKoch OR, Pani G, Borrello S, et al. 2004. Oxidative stress and antioxidant defenses in ethanol‐induced cell injury. Mol Aspects Med 25: 191 – 198.
dc.identifier.citedreferenceKucenas S, Takada N, Park HC, et al. 2008. CNS‐derived glia ensheath peripheral nerves and mediate motor root development. Nat Neurosci 11: 143 – 151.
dc.identifier.citedreferenceKumar S, Duester G. 2010. Retinoic acid signaling in perioptic mesenchyme represses Wnt signaling via induction of Pitx2 and Dkk2. Dev Biol 340: 67 – 74.
dc.identifier.citedreferenceKume T, Deng K, Hogan BL. 2000. Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mfh) are required for the early organogenesis of the kidney and urinary tract. Development 127: 1387 – 1395.
dc.identifier.citedreferenceKwak J, Park OK, Jung YK, et al. 2013. Live imaging profiling of neural crest lineages in zebrafish transgenic lines. Mol Cells 35: 255 – 260.
dc.identifier.citedreferenceLeis LM, Tyler RC, Volkmann Kloss BA, et al. 2012. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet 20: 1224 – 1233.
dc.identifier.citedreferenceLemoine P, Harousseau H, Borteyru JP, Menuet JC. 2003. Children of alcoholic parents ‐ observed anomalies: discussion of 127 cases. Ther Drug Monit 25: 132 – 136.
dc.identifier.citedreferenceLesnik Oberstein SA, Kriek M, White SJ, et al. 2006. Peters Plus syndrome is caused by mutations in B3GALTL, a putative glycosyltransferase. Am J Hum Genet 79: 562 – 566.
dc.identifier.citedreferenceLovely CB, Fernandes Y, Eberhart JK. 2016. Fishing for fetal alcohol spectrum disorders: zebrafish as a model for ethanol teratogenesis. Zebrafish 13: 391 – 398.
dc.identifier.citedreferenceMaier SE, Chen WJ, Miller JA, West JR. 1997. Fetal alcohol exposure and temporal vulnerability regional differences in alcohol‐induced microencephaly as a function of the timing of binge‐like alcohol exposure during rat brain development. Alcohol Clin Exp Res 21: 1418 – 1428.
dc.identifier.citedreferenceMaier SE, Miller JA, Blackwell JM, West JR. 1999. Fetal alcohol exposure and temporal vulnerability: regional differences in cell loss as a function of the timing of binge‐like alcohol exposure during brain development. Alcohol Clin Exp Res 23: 726 – 734.
dc.identifier.citedreferenceMatt N, Dupe V, Garnier J‐M, et al. 2005. Retinoic acid‐dependent eye morphogenesis is orchestrated by neural crest cells. Development 132: 4789 – 4800.
dc.identifier.citedreferenceMatt N, Ghyselinck NB, Pellerin I, Dupe V. 2008. Impairing retinoic acid signalling in the neural crest cells is sufficient to alter entire eye morphogenesis. Dev Biol 320: 140 – 148.
dc.identifier.citedreferenceMattson SN, Riley EP. 1996. In: Abel EL, editor. Brain anomalies in fetal alcohol syndrome. Boca Raton, FL: CRC Press. pp. 50 – 68.
dc.identifier.citedreferenceMiller MT, Epstein RJ, Sugar J, et al. 1984. Anterior segment anomalies associated with the fetal alcohol syndrome. J Pediatr Ophthalmol Strabismus 21: 8 – 18.
dc.identifier.citedreferenceMolotkov A, Molotkova N, Duester G. 2006. Retinoic acid guides eye morphogenetic movements via paracrine signaling but is unnecessary for retinal dorsoventral patterning. Development 133: 1901 – 1910.
dc.identifier.citedreferenceMontero‐Balaguer M, Lang MR, Sachdev SW, et al. 2006. The mother superior mutation ablates foxd3 activity in neural crest progenitor cells and depltes neural crest derivatives in zebrafish. Dev Dyn 235: 3199 – 3212.
dc.identifier.citedreferenceMugoni V, Camporeale A, Santoro MM. 2014. Analysis of oxidative stress in zebrafish embryos. J Vis Exp 89: e51328.
dc.identifier.citedreferenceMuralidharan P, Sarmah S, Marrs JA. 2015. Zebrafish retinal defects induced by ethanol exposure are rescued by retinoic acid and folic acid supplement. Alcohol 49: 149 – 163.
dc.identifier.citedreferenceNoden DM. 1983. The role of the neural crest in patterning of avian cranial skeletal, connective, and muscle tissues. Dev Biol 96: 144 – 165.
dc.identifier.citedreferenceO’Rahilly R. 1966. The early development of the eye in staged human embryos. Contrib Embryol Carneg Inst 38: 1 – 42.
dc.identifier.citedreferenceO’Rahilly R. 1975. The prenatal development of the human eye. Exp Eye Res 21: 93 – 112.
dc.identifier.citedreferenceOzeki H, Shirai S, Ikeda K, Ogura Y. 1999. Anomalies associated with Axenfeld‐Rieger syndrome. Graefes Arch Clin Exp Ophthalmol 237: 730 – 734.
dc.identifier.citedreferenceParnell SE, O’Leary‐Moore SK, Godin EA, et al. 2009. Magnetic resonance microscopy defines ethanol‐induced brain abnormalities in prenatal mice: effects of acute insult on gestational day 8. Alcohol Clin Exp Res 33: 1001 – 1011.
dc.identifier.citedreferencePeterman EM, Sullivan C, Goody MF, et al. 2015. Neutralization of mitochondrial superoxide by superoxide dismutase 2 promotes bacterial clearance and regulates phagocyte numbers in zebrafish. Infect Immun 83: 430 – 440.
dc.identifier.citedreferencePhillips DE, Krueger SK, Rydquist JE. 1991. Short‐ and long‐term effects of combined pre‐ and postnatal ethanol exposure (three trimester equivalency) on the development of myelin and axons in the optic nerve. Int J Dev Neurosci 9: 631 – 647.
dc.identifier.citedreferencePinazo‐Duran MD, Renau‐Piqueras J, Guerri C. 1993. Developmental changes in the optic nerve related to ethanol consumption in pregnant rats: analysis of the ethanol‐exposed optic nerve. Teratology 48: 305 – 322.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.