Show simple item record

Hox11 Function Is Required for Region‐Specific Fracture Repair

dc.contributor.authorRux, Danielle R
dc.contributor.authorSong, Jane Y
dc.contributor.authorPineault, Kyriel M
dc.contributor.authorMandair, Gurjit S
dc.contributor.authorSwinehart, Ilea T
dc.contributor.authorSchlientz, Aleesa J
dc.contributor.authorGarthus, Kayla N
dc.contributor.authorGoldstein, Steve A
dc.contributor.authorKozloff, Ken M
dc.contributor.authorWellik, Deneen M
dc.date.accessioned2017-10-05T18:20:23Z
dc.date.available2018-11-01T16:42:01Zen
dc.date.issued2017-08
dc.identifier.citationRux, Danielle R; Song, Jane Y; Pineault, Kyriel M; Mandair, Gurjit S; Swinehart, Ilea T; Schlientz, Aleesa J; Garthus, Kayla N; Goldstein, Steve A; Kozloff, Ken M; Wellik, Deneen M (2017). "Hox11 Function Is Required for Region‐Specific Fracture Repair." Journal of Bone and Mineral Research 32(8): 1750-1760.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/138416
dc.description.abstractThe processes that govern fracture repair rely on many mechanisms that recapitulate embryonic skeletal development. Hox genes are transcription factors that perform critical patterning functions in regional domains along the axial and limb skeleton during development. Much less is known about roles for these genes in the adult skeleton. We recently reported that Hox11 genes, which function in zeugopod development (radius/ulna and tibia/fibula), are also expressed in the adult zeugopod skeleton exclusively in PDGFRα+/CD51+/LepR+ mesenchymal stem/stromal cells (MSCs). In this study, we use a Hoxa11eGFP reporter allele and loss‐of‐function Hox11 alleles, and we show that Hox11 expression expands after zeugopod fracture injury, and that loss of Hox11 function results in defects in endochondral ossification and in the bone remodeling phase of repair. In Hox11 compound mutant fractures, early chondrocytes are specified but show defects in differentiation, leading to an overall deficit in the cartilage production. In the later stages of the repair process, the hard callus remains incompletely remodeled in mutants due, at least in part, to abnormal bone matrix organization. Overall, our data supports multiple roles for Hox11 genes following fracture injury in the adult skeleton. © 2017 American Society for Bone and Mineral Research.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherENDOCHONDRAL OSSIFICATION–CARTILAGE
dc.subject.otherHOX GENES
dc.subject.otherMOLECULAR PATHWAYS–DEVELOPMENT
dc.subject.otherMESENCHYMAL STROMAL/STEM CELLS
dc.subject.otherSKELETAL INJURY/FRACTURE HEALING
dc.titleHox11 Function Is Required for Region‐Specific Fracture Repair
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138416/1/jbmr3166_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138416/2/jbmr3166.pdf
dc.identifier.doi10.1002/jbmr.3166
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceEinhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions. Nat Rev Rheumatol. 2015; 11 ( 1 ): 45 – 54.
dc.identifier.citedreferenceIzpisua‐Belmonte JC, Duboule D. Homeobox genes and pattern formation in the vertebrate limb. Dev Biol. 1992; 152 ( 1 ): 26 – 36.
dc.identifier.citedreferenceZakany J, Duboule D. The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev. 2007; 17 ( 4 ): 359 – 66.
dc.identifier.citedreferenceBais M, McLean J, Sebastiani P, et al. Transcriptional analysis of fracture healing and the induction of embryonic stem cell‐related genes. PLoS One. 2009; 4 ( 5 ): e5393.
dc.identifier.citedreferenceGersch RP, Lombardo F, McGovern SC, Hadjiargyrou M. Reactivation of Hox gene expression during bone regeneration. J Orthop Res. 2005; 23 ( 4 ): 882 – 90.
dc.identifier.citedreferenceLeucht P, Kim JB, Amasha R, James AW, Girod S, Helms JA. Embryonic origin and Hox status determine progenitor cell fate during adult bone regeneration. Development. 2008; 135 ( 17 ): 2845 – 54.
dc.identifier.citedreferenceSwinehart IT, Schlientz AJ, Quintanilla CA, Mortlock DP, Wellik DM. Hox11 genes are required for regional patterning and integration of muscle, tendon and bone. Development. 2013; 140 ( 22 ): 4574 – 82.
dc.identifier.citedreferenceRux DR, Song JY, Swinehart IT, et al. Regionally restricted Hox function in adult bone marrow multipotent mesenchymal stem/stromal cells. Dev Cell. 2016; 39 ( 6 ): 653 – 66.
dc.identifier.citedreferenceKunisaki Y, Bruns I, Scheiermann C, et al. Arteriolar niches maintain haematopoietic stem cell quiescence. Nature. 2013; 502 ( 7473 ): 637 – 43.
dc.identifier.citedreferencePinho S, Lacombe J, Hanoun M, et al. PDGFRalpha and CD51 mark human nestin+ sphere‐forming mesenchymal stem cells capable of hematopoietic progenitor cell expansion. J Exp Med. 2013; 210 ( 7 ): 1351 – 67.
dc.identifier.citedreferenceZhou BO, Yue R, Murphy MM, Peyer JG, Morrison SJ. Leptin‐receptor‐expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow. Cell Stem Cell. 2014; 15 ( 2 ): 154 – 68.
dc.identifier.citedreferenceRux DR, Wellik DM. Hox genes in the adult skeleton: novel functions beyond embryonic development. Dev Dyn. 2017; 246 ( 4 ): 310 – 7.
dc.identifier.citedreferenceNelson LT, Rakshit S, Sun H, Wellik DM. Generation and expression of a Hoxa11eGFP targeted allele in mice. Dev Dyn. 2008; 237 ( 11 ): 3410 – 6.
dc.identifier.citedreferenceSchindeler A, McDonald MM, Bokko P, Little DG. Bone remodeling during fracture repair: the cellular picture. Semin Cell Dev Biol. 2008; 19 ( 5 ): 459 – 66.
dc.identifier.citedreferenceColnot C. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res. 2009; 24 ( 2 ): 274 – 82.
dc.identifier.citedreferenceMizoguchi T, Pinho S, Ahmed J, et al. Osterix marks distinct waves of primitive and definitive stromal progenitors during bone marrow development. Dev Cell. 2014; 29 ( 3 ): 340 – 9.
dc.identifier.citedreferenceNakahara H, Bruder SP, Goldberg VM, Caplan AI. In vivo osteochondrogenic potential of cultured cells derived from the periosteum. Clin Orthop Relat Res. 1990;( 259 ): 223 – 32.
dc.identifier.citedreferencePark D, Spencer JA, Koh BI, et al. Endogenous bone marrow MSCs are dynamic, fate‐restricted participants in bone maintenance and regeneration. Cell Stem Cell. 2012; 10 ( 3 ): 259 – 72.
dc.identifier.citedreferenceWorthley DL, Churchill M, Compton JT, et al. Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell. 2015; 160 ( 1–2 ): 269 – 84.
dc.identifier.citedreferenceBouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro‐computed tomography. J Bone Miner Res. 2010; 25 ( 7 ): 1468 – 86.
dc.identifier.citedreferenceColnot C, Lu C, Hu D, Helms JA. Distinguishing the contributions of the perichondrium, cartilage, and vascular endothelium to skeletal development. Dev Biol. 2004; 269 ( 1 ): 55 – 69.
dc.identifier.citedreferenceHausman MR, Schaffler MB, Majeska RJ. Prevention of fracture healing in rats by an inhibitor of angiogenesis. Bone. 2001; 29 ( 6 ): 560 – 4.
dc.identifier.citedreferenceSaftig P, Hunziker E, Wehmeyer O, et al. Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin‐K‐deficient mice. Proc Natl Acad Sci U S A. 1998; 95 ( 23 ): 13453 – 8.
dc.identifier.citedreferencePineault KM, Swinehart IT, Garthus KN, et al. Hox11 genes regulate postnatal longitudinal bone growth and growth plate proliferation. Biol Open. 2015; 4 ( 11 ): 1538 – 48.
dc.identifier.citedreferenceMandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep. 2015; 4: 620.
dc.identifier.citedreferenceJunqueira LC, Bignolas G, Brentani RR. Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J. 1979; 11 ( 4 ): 447 – 55.
dc.identifier.citedreferenceWang KC, Helms JA, Chang HY. Regeneration, repair and remembering identity: the three Rs of Hox gene expression. Trends Cell Biol. 2009; 19 ( 6 ): 268 – 75.
dc.identifier.citedreferenceGross S, Krause Y, Wuelling M, Vortkamp A. Hoxa11 and Hoxd11 regulate chondrocyte differentiation upstream of Runx2 and Shox2 in mice. PLoS One. 2012; 7 ( 8 ): e43553.
dc.identifier.citedreferenceBolander ME. Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med. 1992; 200 ( 2 ): 165 – 70.
dc.identifier.citedreferenceEinhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res. 1998; 355 Suppl: S7 – 21.
dc.identifier.citedreferenceFerguson C, Alpern E, Miclau T, Helms JA. Does adult fracture repair recapitulate embryonic skeletal formation ? Mech Dev. 1999; 87(1‐2): 57 – 66.
dc.identifier.citedreferenceGerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post‐natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003; 88 ( 5 ): 873 – 84.
dc.identifier.citedreferenceVortkamp A, Pathi S, Peretti GM, Caruso EM, Zaleske DJ, Tabin CJ. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech Dev. 1998; 71 ( 1–2 ): 65 – 76.
dc.identifier.citedreferenceDuboule D. Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Dev Suppl. 1994; 135 – 42.
dc.identifier.citedreferenceIimura T, Pourquie O. Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature. 2006; 442 ( 7102 ): 568 – 71.
dc.identifier.citedreferenceMallo M, Wellik DM, Deschamps J. Hox genes and regional patterning of the vertebrate body plan. Dev Biol. 2010; 344 ( 1 ): 7 – 15.
dc.identifier.citedreferenceCondie BG, Capecchi MR. Mice with targeted disruptions in the paralogous genes hoxa‐3 and hoxd‐3 reveal synergistic interactions. Nature. 1994; 370 ( 6487 ): 304 – 7.
dc.identifier.citedreferenceFromental‐Ramain C, Warot X, Lakkaraju S, et al. Specific and redundant functions of the paralogous Hoxa‐9 and Hoxd‐9 genes in forelimb and axial skeleton patterning. Development. 1996; 122 ( 2 ): 461 – 72.
dc.identifier.citedreferenceHoran GS, Ramirez‐Solis R, Featherstone MS, Wolgemuth DJ, Bradley A, Behringer RR. Compound mutants for the paralogous hoxa‐4, hoxb‐4, and hoxd‐4 genes show more complete homeotic transformations and a dose‐dependent increase in the number of vertebrae transformed. Genes Dev. 1995; 9 ( 13 ): 1667 – 77.
dc.identifier.citedreferenceKostic D, Capecchi MR. Targeted disruptions of the murine Hoxa‐4 and Hoxa‐6 genes result in homeotic transformations of components of the vertebral column. Mech Dev. 1994; 46 ( 3 ): 231 – 47.
dc.identifier.citedreferencevan den Akker E, Fromental‐Ramain C, de Graaff W, et al. Axial skeletal patterning in mice lacking all paralogous group 8 Hox genes. Development. 2001; 128 ( 10 ): 1911 – 21.
dc.identifier.citedreferenceWellik DM. Hox genes and vertebrate axial pattern. Curr Top Dev Biol. 2009; 88: 257 – 78.
dc.identifier.citedreferenceWellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003; 301 ( 5631 ): 363 – 7.
dc.identifier.citedreferenceBoulet AM, Capecchi MR. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development. 2004; 131 ( 2 ): 299 – 309.
dc.identifier.citedreferenceDavis AP, Witte DP, Hsieh‐Li HM, Potter SS, Capecchi MR. Absence of radius and ulna in mice lacking hoxa‐11 and hoxd‐11. Nature. 1995; 375 ( 6534 ): 791 – 5.
dc.identifier.citedreferenceFromental‐Ramain C, Warot X, Messadecq N, LeMeur M, Dolle P, Chambon P. Hoxa‐13 and Hoxd‐13 play a crucial role in the patterning of the limb autopod. Development. 1996; 122 ( 10 ): 2997 – 3011.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.