Show simple item record

Robust Learning from Multiple Information Sources

dc.contributor.authorXie, Tianpei
dc.date.accessioned2017-10-05T20:28:08Z
dc.date.availableNO_RESTRICTION
dc.date.available2017-10-05T20:28:08Z
dc.date.issued2017
dc.date.submitted2017
dc.identifier.urihttps://hdl.handle.net/2027.42/138599
dc.description.abstractIn the big data era, the ability to handle high-volume, high-velocity and high-variety information assets has become a basic requirement for data analysts. Traditional learning models, which focus on medium size, single source data, often fail to achieve reliable performance if data come from multiple heterogeneous sources (views). As a result, robust multi-view data processing methods that are insensitive to corruptions and anomalies in the data set are needed. This thesis develops robust learning methods for three problems that arise from real-world applications: robust training on a noisy training set, multi-view learning in the presence of between-view inconsistency and network topology inference using partially observed data. The central theme behind all these methods is the use of information-theoretic measures, including entropies and information divergences, as parsimonious representations of uncertainties in the data, as robust optimization surrogates that allows for efficient learning, and as flexible and reliable discrepancy measures for data fusion. More specifically, the thesis makes the following contributions: 1. We propose a maximum entropy-based discriminative learning model that incorporates the minimal entropy (ME) set anomaly detection technique. The resulting probabilistic model can perform both nonparametric classification and anomaly detection simultaneously. An efficient algorithm is then introduced to estimate the posterior distribution of the model parameters while selecting anomalies in the training data. 2. We consider a multi-view classification problem on a statistical manifold where class labels are provided by probabilistic density functions (p.d.f.) and may not be consistent among different views due to the existence of noise corruption. A stochastic consensus-based multi-view learning model is proposed to fuse predictive information for multiple views together. By exploring the non-Euclidean structure of the statistical manifold, a joint consensus view is constructed that is robust to single-view noise corruption and between-view inconsistency. 3. We present a method for estimating the parameters (partial correlations) of a Gaussian graphical model that learns a sparse sub-network topology from partially observed relational data. This model is applicable to the situation where the partial correlations between pairs of variables on a measured sub-network (internal data) are to be estimated when only summary information about the partial correlations between variables outside of the sub-network (external data) are available. The proposed model is able to incorporate the dependence structure between latent variables from external sources and perform latent feature selection efficiently. From a multi-view learning perspective, it can be seen as a two-view learning system given asymmetric information flow from both the internal view and the external view.
dc.language.isoen_US
dc.subjectrobust learning
dc.subjectmulti-view learning
dc.subjectnetwork topology inference
dc.subjectgraphical models
dc.subjectBayesian methods
dc.subjectstatistical manifolds
dc.titleRobust Learning from Multiple Information Sources
dc.typeThesisen_US
dc.description.thesisdegreenamePhDen_US
dc.description.thesisdegreedisciplineElectrical & Computer Eng PhD
dc.description.thesisdegreegrantorUniversity of Michigan, Horace H. Rackham School of Graduate Studies
dc.contributor.committeememberHero III, Alfred O
dc.contributor.committeememberKoutra, Danai
dc.contributor.committeememberBalzano, Laura Kathryn
dc.contributor.committeememberNasrabadi, Nasser
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138599/1/tianpei_1.pdf
dc.identifier.orcid0000-0002-8437-6069
dc.identifier.name-orcidXie, Tianpei; 0000-0002-8437-6069en_US
dc.owningcollnameDissertations and Theses (Ph.D. and Master's)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.