Show simple item record

Eruptive event generator based on the Gibson‐Low magnetic configuration

dc.contributor.authorBorovikov, D.
dc.contributor.authorSokolov, I. V.
dc.contributor.authorManchester, W. B.
dc.contributor.authorJin, M.
dc.contributor.authorGombosi, T. I.
dc.date.accessioned2017-10-23T17:30:45Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-08
dc.identifier.citationBorovikov, D.; Sokolov, I. V.; Manchester, W. B.; Jin, M.; Gombosi, T. I. (2017). "Eruptive event generator based on the Gibson‐Low magnetic configuration." Journal of Geophysical Research: Space Physics 122(8): 7979-7984.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/138857
dc.description.abstractCoronal mass ejections (CMEs), a kind of energetic solar eruptions, are an integral subject of space weather research. Numerical magnetohydrodynamic (MHD) modeling, which requires powerful computational resources, is one of the primary means of studying the phenomenon. With increasing accessibility of such resources, grows the demand for user‐friendly tools that would facilitate the process of simulating CMEs for scientific and operational purposes. The Eruptive Event Generator based on Gibson‐Low flux rope (EEGGL), a new publicly available computational model presented in this paper, is an effort to meet this demand. EEGGL allows one to compute the parameters of a model flux rope driving a CME via an intuitive graphical user interface. We provide a brief overview of the physical principles behind EEGGL and its functionality. Ways toward future improvements of the tool are outlined.Key PointsIncrease visibility of a recently developed online tool, EEGGLProvide brief overview of the basic principles EEGGL is based onOutline the direction of future development of EEGGL
dc.publisherTERRAPUB
dc.publisherWiley Periodicals, Inc.
dc.subject.othermethods: numerical
dc.subject.othermagnetohydrodynamics (MHD)
dc.subject.otherSun: coronal mass ejections (CMEs)
dc.titleEruptive event generator based on the Gibson‐Low magnetic configuration
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138857/1/jgra53711.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138857/2/jgra53711_am.pdf
dc.identifier.doi10.1002/2017JA024304
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMason, J. P., T. N. Woods, D. F. Webb, B. J. Thompson, R. C. Colaninno, and A. Vourlidas ( 2016 ), Relationship of EUV irradiance coronal dimming slope and depth to coronal mass ejection speed and mass, Astrophys. J., 830, 20, doi: 10.3847/0004-637X/830/1/20.
dc.identifier.citedreferenceLandau, L. D., and E. M. Lifshitz ( 1960 ), Electrodynamics of Continuous Media, Pergamon Press, Oxford.
dc.identifier.citedreferenceLiu, Y., J. A. Davies, J. G. Luhmann, A. Vourlidas, S. D. Bale, and R. P. Lin ( 2010 ), Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU, Astrophys. J. Lett., 710, L82—L87, doi: 10.1088/2041-8205/710/1/L82.
dc.identifier.citedreferenceLugaz, N., W. B. Manchester IV, and T. I. Gombosi ( 2005 ), Numerical simulation of the interaction of two coronal mass ejections from Sun to Earth, Astrophys. J., 634, 651 – 662, doi: 10.1086/491782.
dc.identifier.citedreferenceLugaz, N., W. B. Manchester, I. I. R. IV, G. Tóth, and T. I. Gombosi ( 2007 ), Numerical investigation of the homologous coronal mass ejection events from active region 9236, Astrophys. J., 659, 788 – 800, doi: 10.1086/512005.
dc.identifier.citedreferenceManchester, W. B., T. I. Gombosi, I. Roussev, A. Ridley, D. L. De Zeeuw, I. V. Sokolov, K. G. Powell, and G. Tóth ( 2004a ), Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation, J. Geophys. Res., 109, 2107 – 2122, doi: 10.1029/2003JA010150.
dc.identifier.citedreferenceManchester, W. B., T. I. Gombosi, I. Roussev, D. L. De Zeeuw, I. V. Sokolov, K. G. Powell, G. Tóth, and M. Opher ( 2004b ), Three‐dimensional MHD simulation of a flux rope driven CME, J. Geophys. Res., 109, 1102 – 1119, doi: 10.1029/2002JA009672.
dc.identifier.citedreferenceManchester, W. B., A. J. Ridley, T. I. Gombosi, and D. L. DeZeeuw ( 2006 ), Modeling the Sun‐to‐Earth propagation of a very fast CME, Adv. Space Re., 38, 253 – 262, doi: 10.1016/j.asr.2005.09.044.
dc.identifier.citedreferenceManchester IV, W. B., J. U. Kozyra, S. T. Lepri, and B. Lavraud ( 2014a ), Simulation of magnetic cloud erosion during propagation, J. Geophys. Res. Space Phyics, 119, 5449 – 5464, doi: 10.1002/2014JA019882.
dc.identifier.citedreferenceManchester IV, W. B., B. van der Holst, and B. Lavraud ( 2014b ), Flux rope evolution in interplanetary coronal mass ejections: The 13 May 2005 event, Plasma Phys. Controlled Fusion, 56 ( 6 ), 064006, doi: 10.1088/0741-3335/56/6/064006.
dc.identifier.citedreferenceOdstrčil, D. ( 2003 ), Modeling 3‐D solar wind structure, Adv. Space Sci., 32 ( 4 ), A02106, doi: 10.1029/2004JA010745.
dc.identifier.citedreferencePoedts, S., and J. Pomoell ( 2017 ), EUHFORIA: A solar wind and CME evolution model, in Proceedings of the 19th EGU General Assembly Conference Abstracts, vol. 19, 7396 pp., EGU General Assembly, Vienna.
dc.identifier.citedreferenceRiley, P., et al. ( 2015 ), Predicting the interplanetary magnetic field using approaches based on data mining and physical models, Abstract SH14A‐06 presented at 2015 Fall Meeting, AGU, San Francisco, Calif., 13–17 Dec.
dc.identifier.citedreferenceRollett, T., C. Möstl, A. Isavnin, J. A. Davies, M. Kubicka, U. V. Amerstorfer, and R. A. Harrison ( 2016 ), ElEvoHI: A novel CME prediction tool for heliospheric imaging combining an elliptical front with drag‐based model fitting, Astrophys. J., 824, 131, doi: 10.3847/0004-637X/824/2/131.
dc.identifier.citedreferenceSavani, N. P., A. Vourlidas, A. Szabo, M. L. Mays, I. G. Richardson, B. J. Thompson, A. Pulkkinen, R. Evans, and T. Nieves‐Chinchilla ( 2015 ), Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture, Space Weather, 13, 374 – 385, doi: 10.1002/2015SW001171.
dc.identifier.citedreferenceShafranov, V. D. ( 1966 ), Plasma equilibrium in a magnetic field, Rev. Plasma Phys., 2, 103.
dc.identifier.citedreferenceShiota, D., and R. Kataoka ( 2016 ), Magnetohydrodynamic simulation of interplanetary propagation of multiple coronal mass ejections with internal magnetic flux rope (SUSANOO‐CME), Space Weather, 14 ( 2 ), 56 – 75, doi: 10.1002/2015SW001308.
dc.identifier.citedreferenceTitov, V. S., and P. Démoulin ( 1999 ), Basic topology of twisted magnetic configurations in solar flares, Astron. Astrophys., 351, 707 – 720.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 – 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceWebb, D. F. ( 1995 ), Coronal mass ejections: The key to major interplanetary and geomagnetic disturbances, Rev. Geophys. Suppl., 33, 577 – 583, doi: 10.1029/95RG00345.
dc.identifier.citedreferenceWebb, D. F. ( 2000 ), Coronal mass ejections: Origins, evolution, and role in space weather, IEEE Trans. Plasma Sci., 28, 1795 – 1806, doi: 10.1109/27.902209.
dc.identifier.citedreferenceZhao, X. P., S. P. Plunkett, and W. Liu ( 2002 ), Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model, J. Geophys. Res., 107, 1223, doi: 10.1029/2001JA009143.
dc.identifier.citedreferenceBobra, M. G., X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K. D. Leka ( 2014 ), The Helioseismic and Magnetic Imager (HMI) vector magnetic field pipeline: SHARPs—Space‐Weather HMI Active Region Patches, Sol. Phys., 289, 3549 – 3578, doi: 10.1007/s11207-014-0529-3.
dc.identifier.citedreferenceCliver, E. W. ( 2009 ), History of research on solar energetic particle (SEP) events: The evolving paradigm, in Proceedings of the International Astronomical Union, Universal Heliophysical Processes, IAU Symposium, vol. 257, edited by N.   Gopalswamy and D. F.   Webb, pp. 401 – 412, Ionnina, Greece, doi: 10.1017/S1743921309029639.
dc.identifier.citedreferenceDavis, C. J., J. A. Davies, M. Lockwood, A. P. Rouillard, C. J. Eyles, and R. A. Harrison ( 2009 ), Stereoscopic imaging of an Earth‐impacting solar coronal mass ejection: A major milestone for the STEREO mission, Geophys. Res. Lett., 36, L08102, doi: 10.1029/2009GL038021.
dc.identifier.citedreferenceDryer, M., Z. Smith, C. D. Fry, W. Sun, C. S. Deehr, and S.‐I. Akasofu ( 2004 ), Real‐time shock arrival predictions during the “Halloween 2003 epoch”, Space Weather, 2, S09001, doi: 10.1029/2004SW000087.
dc.identifier.citedreferenceFry, C. D., W. Sun, C. S. Deehr, M. Dryer, Z. Smith, S.‐I. Akasofu, M. Tokumaru, and M. Kojima ( 2001 ), Improvements to the HAF solar wind model for space weather predictions, J. Geophys. Res., 106, 20,985 – 21,002, doi: 10.1029/2000JA000220.
dc.identifier.citedreferenceGibson, S. E., and B. C. Low ( 1998 ), A time‐dependent three‐dimensional magnetohydrodynamic model of the coronal mass ejection, Astrophys. J., 493, 460 – 473, doi: 10.1086/305107.
dc.identifier.citedreferenceGopalswamy, N. ( 2009 ), Coronal mass ejections and space weather, in Climate and Weather of the Sun‐Earth System (CAWSES): Selected Papers from the 2007 Kyoto Symposium, pp. 77 – 120, TERRAPUB, Tokyo.
dc.identifier.citedreferenceGopalswamy, N., A. Lara, S. Yashiro, M. L. Kaiser, and R. A. Howard ( 2001 ), Predicting the 1‐AU arrival times of coronal mass ejections, J. Geophys. Res., 29,207–29,218, 106, doi: 10.1029/2001JA000177.
dc.identifier.citedreferenceGopalswamy, N., S. Yashiro, S. Akiyama, and H. Xie ( 2017 ), Estimation of reconnection flux using post‐eruption arcades and its relevance to magnetic clouds at 1 AU, Sol. Phys., 292, 65, doi: 10.1007/s11207-017-1080-9.
dc.identifier.citedreferenceGrad, H., and H. Rubin ( 1958 ), Hydromagnetic equilibria and force‐free fields, in Proceedings of the 2nd UN Conference on the Peaceful Uses of Atomic Energy, vol. 31, pp. 190 – 197, International Atomic Energy Agency, Geneva, Switzerland.
dc.identifier.citedreferenceHakamada, K., and S.‐I. Akasofu ( 1982 ), Simulation of three‐dimensional solar wind disturbances and resulting geomagnetic storms, Space Sci. Rev., 31, 3 – 70, doi: 10.1007/BF00349000.
dc.identifier.citedreferenceHayashi, K., X. P. Zhao, and Y. Liu ( 2006 ), MHD simulation of two successive interplanetary disturbances driven by cone‐model parameters in IPS‐based solar wind, Geophys. Res. Lett., 33, L20103, doi: 10.1029/2006GL027408.
dc.identifier.citedreferenceHoward, R. A., et al. ( 1997 ), Observations of CMEs from SOHO/LASCO, in Coronal Mass Ejections, Geophys. Monogr. Ser., vol. 99, pp. 17 – 26, AGU, Washington, D. C., doi: 10.1029/GM099p0017.
dc.identifier.citedreferenceHundhausen, A. J. ( 1993 ), Sizes and locations of coronal mass ejections—SMM observations from 1980 and 1984–1989, J. Geophys. Res., 98 ( 13 ), 177, doi: 10.1029/93JA00157.
dc.identifier.citedreferenceJin, M., C. J. Schrijver, M. C. M. Cheung, M. L. DeRosa, N. V. Nitta, and A. M. Title ( 2016 ), A numerical study of long‐range magnetic impacts during coronal mass ejections, Astrophys. J., 820, 16, doi: 10.3847/0004-637X/820/1/16.
dc.identifier.citedreferenceJin, M., W. B. Manchester, B. van der Holst, I. Sokolov, G. Tóth, A. Vourlidas, C. A. de   Koning, and T. I. Gombosi ( 2017a ), Chromosphere to 1 AU simulation of the 2011 March 7th event: A comprehensive study of coronal mass ejection propagation, Astrophys. J., 834 ( 2 ), 172, doi: 10.3847/1538-4357/834/2/172.
dc.identifier.citedreferenceJin, M., W. B. Manchester, B. van der Holst, I. Sokolov, G. Tóth, R. E. Mullinix, A. Taktakishvili, A. Chulaki, and T. I. Gombosi ( 2017b ), Data‐constrained coronal mass ejections in a global magnetohydrodynamics model, Astrophys. J., 834 ( 2 ), 173, doi: 10.3847/1538-4357/834/2/173.
dc.identifier.citedreferenceKataoka, R., T. Ebisuzaki, K. Kusano, D. Shiota, S. Inoue, T. T. Yamamoto, and M. Tokumaru ( 2009 ), Three‐dimensional MHD modeling of the solar wind structures associated with 13 December 2006 coronal mass ejection, J. Geophys. Res., 114, A10102, doi: 10.1029/2009JA014167.
dc.identifier.citedreferenceKay, C., N. Gopalswamy, A. Reinard, and M. Opher ( 2017 ), Predicting the magnetic field of Earth‐impacting CMEs, Astrophys. J., 835, 117, doi: 10.3847/1538-4357/835/2/117.
dc.identifier.citedreferenceLakhina, G. S., and B. T. Tsurutani ( 2016 ), Geomagnetic storms: Historical perspective to modern view, Geosci. Lett., 3 ( 5 ), 1 – 11, doi: 10.1186/s40562-016-0037-4.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.