Show simple item record

Flux ropes in the Hermean magnetotail: Distribution, properties, and formation

dc.contributor.authorSmith, A. W.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorJackman, C. M.
dc.contributor.authorPoh, G.‐k.
dc.contributor.authorFear, R. C.
dc.date.accessioned2017-10-23T17:30:46Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-08
dc.identifier.citationSmith, A. W.; Slavin, J. A.; Jackman, C. M.; Poh, G.‐k. ; Fear, R. C. (2017). "Flux ropes in the Hermean magnetotail: Distribution, properties, and formation." Journal of Geophysical Research: Space Physics 122(8): 8136-8153.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/138858
dc.description.abstractAn automated method was applied to identify magnetotail flux rope encounters in MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) magnetometer data. The method identified significant deflections of the northâ south component of the magnetic field coincident with enhancements in the total field or dawnâ dusk component. Two hundred fortyâ eight flux ropes are identified that possess wellâ defined minimum variance analysis (MVA) coordinate systems, with clear rotations of the field. Approximately 30% can be well approximated by the cylindrically symmetric, linearly forceâ free model. Flux ropes are most common moving planetward, in the postmidnight sector. Observations are intermittent, with the majority (61%) of plasma sheet passages yielding no flux ropes; however, the peak rate of flux ropes during a reconnection episode is â ¼5 minâ 1. Overall, the peak postmidnight rate is â ¼0.25 minâ 1. Only 25% of flux ropes are observed in isolation. The radius of flux ropes is comparable to the ion inertial length within Mercury’s magnetotail plasma sheet. No clear statistical separation is observed between tailward and planetward moving flux ropes, suggesting the nearâ Mercury neutral line (NMNL) is highly variable. Flux ropes are more likely to be observed if the preceding lobe field is enhanced over background levels. A very weak correlation is observed between the flux rope core field and the preceding lobe field orientation; a stronger relationship is found with the orientation of the field within the plasma sheet. The core field strength measured is â ¼6 times stronger than the local dawnâ dusk plasma sheet magnetic field.Key PointsTwo hundred fortyâ eight flux ropes identified in Mercury’s magnetotail (74 cylindrical and linearly forceâ free)Flux ropes most commonly observed by MESSENGER postmidnight, moving planetwardFlux ropes observed intermittently, but most often when the preceding lobe field is enhanced
dc.publisherAdvisory Group for Aerospace Res. and Dev., NATO
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMercury’s magnetotail
dc.subject.otherMESSENGER
dc.subject.otherflux ropes
dc.titleFlux ropes in the Hermean magnetotail: Distribution, properties, and formation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138858/1/jgra53697_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138858/2/jgra53697.pdf
dc.identifier.doi10.1002/2017JA024295
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., et al. ( 1989 ), CDAW 8 observations of plasmoid signatures in the geomagnetic tail: An assessment, J. Geophys. Res., 94 ( A11 ), 15,153 â 15,175, doi: 10.1029/JA094iA11p15153.
dc.identifier.citedreferenceSiscoe, G. L., N. F. Ness, and C. M. Yeates ( 1975 ), Substorms on Mercury?, J. Geophys. Res., 80 ( 31 ), 4359 â 4363, doi: 10.1029/JA080i031p04359.
dc.identifier.citedreferenceSlavin, J. A., R. P. Lepping, J. Gjerloev, D. H. Fairfield, M. Hesse, C. J. Owen, M. B. Moldwin, T. Nagai, A. Ieda, and T. Mukai ( 2003 ), Geotail observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res., 108, 1015, doi: 10.1029/2002JA009557.
dc.identifier.citedreferenceSlavin, J. A., E. I. Tanskanen, M. Hesse, C. J. Owen, M. W. Dunlop, S. Imber, E. A. Lucek, A. Balogh, and K. H. Glassmeier ( 2005 ), Cluster observations of traveling compression regions in the nearâ tail, J. Geophys. Res., 110, A06207, doi: 10.1029/2004JA010878.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, SCIENCE, 324 ( 5927 ), 606 â 610.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail, Science, 329 ( 5992 ), 665 â 668, doi: 10.1126/science.1188067.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, doi: 10.1029/2011JA016900.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 â 8116, doi: 10.1002/2014JA020319.
dc.identifier.citedreferenceSmith, A. W., J. A. Slavin, C. M. Jackman, R. C. Fear, G.â K. Poh, G. A. DiBraccio, J. M. Jasinski, and L. Trenchi ( 2017 ), Automated forceâ free flux rope identification, J. Geophys. Res. Space Physics, 122, 780 â 791, doi: 10.1002/2016JA022994.
dc.identifier.citedreferenceSolomon, S. C., R. L. McNutt   Jr., R. E. Gold, and D. L. Domingue ( 2007 ), MESSENGER mission overview, Space Sci. Rev., 131 ( 1â 4 ), 3 â 39.
dc.identifier.citedreferenceSonnerup, B. U. Ã ., and L. J. Cahill ( 1967 ), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72 ( 1 ), 171 â 183, doi: 10.1029/JZ072i001p00171.
dc.identifier.citedreferenceSonnerup, B. U. à ., and M. Scheible ( 1998 ), Minimum and maximum variance analysis, in Analysis Methods for Multiâ Spacecraft Data, edited by G.   Paschmann and P. W.   Daly, pp. 185 â 220, ISSI Scientific Report SRâ 001, ISSI/ESA., Bern, Switzerland.
dc.identifier.citedreferenceSun, W.â J., et al. ( 2015 ), MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail, Geophys. Res. Lett., 42, 3692 â 3699, doi: 10.1002/2015GL064052.
dc.identifier.citedreferenceSun, W. J., S. Y. Fu, J. A. Slavin, J. M. Raines, Q. G. Zong, G. K. Poh, and T. H. Zurbuchen ( 2016 ), Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations, J. Geophys. Res. Space Physics, 121, 7590 â 7607, doi: 10.1002/2016JA022787.
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of dipolarization events in Mercury’s magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.
dc.identifier.citedreferenceTeh, W.â L., R. Nakamura, H. Karimabadi, W. Baumjohann, and T. L. Zhang ( 2014 ), Correlation of core field polarity of magnetotail flux ropes with the IMF B y: Reconnection guide field dependency, J. Geophys. Res. Space Physics, 119, 2933 â 2944, doi: 10.1002/2013JA019454.
dc.identifier.citedreferenceTenfjord, P., N. Ã stgaard, K. Snekvik, K. M. Laundal, J. P. Reistad, S. Haaland, and S. E. Milan ( 2015 ), How the IMF B y induces a B y component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres, J. Geophys. Res. Space Physics, 120, 9368 â 9384, doi: 10.1002/2015JA021579.
dc.identifier.citedreferenceVogt, M. F., M. G. Kivelson, K. K. Khurana, S. P. Joy, and R. J. Walker ( 2010 ), Reconnection and flows in the Jovian magnetotail as inferred from magnetometer observations, J. Geophys. Res., 115, A06219, doi: 10.1029/2009JA015098.
dc.identifier.citedreferenceWalsh, A. P., et al. ( 2014 ), Dawn dusk asymmetries in the coupled solar wind magnetosphere ionosphere system: A review, Ann. Geophys., 32 ( 7 ), 705 â 737, doi: 10.5194/angeo-32-705-2014.
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 â 2227, doi: 10.1002/jgra.50237.
dc.identifier.citedreferenceXiao, C. J., Z. Y. Pu, Z. W. Ma, S. Y. Fu, Z. Y. Huang, and Q. G. Zong ( 2004 ), Inferring of flux rope orientation with the minimum variance analysis technique, J. Geophys. Res., 109, A11218, doi: 10.1029/2004JA010594.
dc.identifier.citedreferenceZhong, J., W. X. Wan, J. A. Slavin, Y. Wei, R. L. Lin, L. H. Chai, J. M. Raines, Z. J. Rong, and X. H. Han ( 2015 ), Mercury’s threeâ dimensional asymmetric magnetopause, J. Geophys. Res. Space Physics, 120, 7658 â 7671, doi: 10.1002/2015JA021425.
dc.identifier.citedreferenceAkasofu, S.â I. ( 1964 ), The development of the auroral substorm, Planet. Space Sci., 12 ( 4 ), 273 â 282, doi: 10.1016/0032-0633(64)90151-5.
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, S. Y. Bobrovnikov, J. A. Slavin, and M. Sarantos ( 2008 ), Paraboloid model of Mercury’s magnetosphere, J. Geophys. Res., 113, A12210, doi: 10.1029/2008JA013368.
dc.identifier.citedreferenceAlexeev, I. I., E. S. Belenkaya, J. A. Slavin, B. J. Anderson, D. N. Baker, S. A. Boardsen, C. L. Johnson, M. E. Purucker, M. Sarantos, and S. C. Solomon ( 2010 ), Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209 ( 1 ), 23 â 39, doi: 10.1016/j.icarus.2010.01.024.
dc.identifier.citedreferenceAnderson, B., M. Acuña, D. Lohr, J. Scheifele, A. Raval, H. Korth, and J. Slavin ( 2007 ), The magnetometer instrument on MESSENGER, Space Sci. Rev., 131 ( 1â 4 ), 417 â 450, doi: 10.1007/s11214-007-9246-7.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, H. Korth, M. E. Purucker, C. L. Johnson, J. A. Slavin, S. C. Solomon, and R. L. McNutt ( 2008 ), The structure of Mercury’s magnetic field from MESSENGER’s first flyby, Science, 321, 5885.
dc.identifier.citedreferenceAnderson, B. J., et al. ( 2010 ), The magnetic field of Mercury, Space Sci. Rev., 152 ( 1 ), 307 â 339, doi: 10.1007/s11214-009-9544-3.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt, J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333 ( 6051 ), 1859 â 1862, doi: 10.1126/science.1211001.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, R. M. Winslow, J. E. Borovsky, M. E. Purucker, J. A. Slavin, S. C. Solomon, M. T. Zuber, and R. L. McNutt ( 2012 ), Lowâ degree structure in Mercury’s planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.
dc.identifier.citedreferenceBaker, D. N., J. A. Simpson, and J. H. Eraker ( 1986 ), A model of impulsive acceleration and transport of energetic particles in Mercury’s magnetosphere, J. Geophys. Res., 91 ( 1 ), 8742 â 8748, doi: 10.1029/JA091iA08p08742.
dc.identifier.citedreferenceBaker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron ( 1996 ), Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101 ( A6 ), 12,975 â 13,010, doi: 10.1029/95JA03753.
dc.identifier.citedreferenceBorg, A. L., M. Taylor, and J. P. Eastwood ( 2012 ), Observations of magnetic flux ropes during magnetic reconnection in the Earth’s magnetotail, Ann. Geophys., 30 ( 5 ), 761 â 773.
dc.identifier.citedreferenceBrowett, S. D., R. C. Fear, A. Grocott, and S. E. Milan ( 2017 ), Timescales for the penetration of IMF B y into the Earth’s magnetotail, J. Geophys. Res. Space Physics, 122, 579 â 593, doi: 10.1002/2016JA023198.
dc.identifier.citedreferenceBurlaga, L. ( 2001 ), Magnetic fields and plasmas in the inner heliosphere: Helios results, Planet. Space Sci., 49 ( 14 ), 1619 â 1627, doi: 10.1016/S0032-0633(01)00098-8.
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ), Magnetic clouds and forceâ free fields with constant alpha, J. Geophys. Res., 93 ( A7 ), 7217 â 7224, doi: 10.1029/JA093iA07p07217.
dc.identifier.citedreferenceChriston, S. ( 1987 ), A comparison of the Mercury and Earth magnetospheres: Electron measurements and substorm time scales, Icarus, 71 ( 3 ), 448 â 471, doi: 10.1016/0019-1035(87)90040-6.
dc.identifier.citedreferenceCowley, S. W. H. ( 1981 ), Magnetospheric asymmetries associated with the y â component of the IMF, Space Sci. Rev., 29, 79 â 96.
dc.identifier.citedreferenceCowley, S. W. H. ( 1981 ), Magnetospheric and ionospheric flow and the interplanetary magnetic field, in Physical Basis of the Ionosphere in the Solarâ Terrestrial System, AGARD CPâ 295, pp. 4.1 â 4.14, Advisory Group for Aerospace Res. and Dev., NATO, Neuilly sur Seine, France.
dc.identifier.citedreferenceCowley, S. W. H., and W. J. Hughes ( 1983 ), Observation of an IMF sector effect in the Y magnetic field component at geostationary orbit, Planet. Space Sci., 31 ( 1 ), 73 â 90, doi: 10.1016/0032-0633(83)90032-6.
dc.identifier.citedreferenceDi Braccio, G. A., et al. ( 2015 ), MESSENGER observations of flux ropes in Mercury’s magnetotail, Planet. Space Sci., 115, 77 â 89, doi: 10.1016/j.pss.2014.12.016.
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 â 48.
dc.identifier.citedreferenceDungey, J. W. ( 1965 ), The length of the magnetospheric tail, J. Geophys. Res., 70 ( 7 ), 1753 â 1753, doi: 10.1029/JZ070i007p01753.
dc.identifier.citedreferenceEastwood, J. P., and S. A. Kiehas ( 2015 ), Magnetotails in the Solar System, pp. 269 â 287, John Wiley, Hoboken, N. J.
dc.identifier.citedreferenceEastwood, J. P., et al. ( 2016 ), Ionâ scale secondary fluxâ ropes generated by magnetopause reconnection as resolved by MMS, Geophys. Res. Lett., 43, 4716 â 4724, doi: 10.1002/2016GL068747.
dc.identifier.citedreferenceElphic, R. C., C. A. Cattell, K. Takahashi, S. J. Bame, and C. T. Russell ( 1986 ), ISEEâ 1 and 2 observations of magnetic flux ropes in the magnetotail: FTE’s in the plasma sheet?, Geophys. Res. Lett., 13 ( 7 ), 648 â 651, doi: 10.1029/GL013i007p00648.
dc.identifier.citedreferenceEraker, J. H., and J. A. Simpson ( 1986 ), Acceleration of charged particles in Mercury’s magnetosphere, J. Geophys. Res., 91 ( A9 ), 9973 â 9993, doi: 10.1029/JA091iA09p09973.
dc.identifier.citedreferenceFairfield, D. H. ( 1979 ), On the average configuraton of the geomagnetic tail, J. Geophys. Res., 84 ( A5 ), 1950 â 1958, doi: 10.1029/JA084iA05p01950.
dc.identifier.citedreferenceFairfield, D. H. ( 1985 ), Solar wind control of magnetospheric pressure (CDAW 6), J. Geophys. Res., 90 ( 1 ), 1201 â 1204, doi: 10.1029/JA090iA02p01201.
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2014 ), Ion kinetic properties in Mercury’s preâ midnight plasma sheet, Geophys. Res. Lett., 41, 5740 â 5747, doi: 10.1002/2014GL060468.
dc.identifier.citedreferenceHones, E. W. ( 1977 ), Substorm processes in magnetotail: Comments on â On hot tenuous plasmas, fireballs, and boundaryâ layers in Earth’s magnetotail’ by L. A. Frank, K. L. Ackerson, and R. P. Lepping, J. Geophys. Res., 82 ( 35 ), 5633 â 5640.
dc.identifier.citedreferenceHones, E. W., D. N. Baker, S. J. Bame, W. C. Feldman, J. T. Gosling, D. J. McComas, R. D. Zwickl, J. A. Slavin, E. J. Smith, and B. T. Tsurutani ( 1984 ), Structure of the magnetotail at 220 R E and its response to geomagnetic activity, Geophys. Res. Lett., 11 ( 1 ), 5 â 7, doi: 10.1029/GL011i001p00005.
dc.identifier.citedreferenceHuang, C.â S. ( 2002 ), Evidence of periodic (2â 3 hour) nearâ tail magnetic reconnection and plasmoid formation: Geotail observations, Geophys. Res. Lett., 29 ( 24 ), 42 â 44, doi: 10.1029/2002GL016162.
dc.identifier.citedreferenceHughes, W. J., and D. G. Sibeck ( 1987 ), On the 3â dimensional structure of plasmoids, Geophys. Res. Lett., 14 ( 6 ), 636 â 639, doi: 10.1029/GL014i006p00636.
dc.identifier.citedreferenceIeda, A., S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, and S. Kokubun ( 1998 ), Statistical analysis of the plasmoid evolution with Geotail observations, J. Geophys. Res., 103 ( A3 ), 4453 â 4465, doi: 10.1029/97JA03240.
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, H. U. Auster, and V. Angelopoulos ( 2011 ), A THEMIS survey of flux ropes and traveling compression regions: Location of the nearâ Earth reconnection site during solar minimum, J. Geophys. Res., 116, A02201, doi: 10.1029/2010JA016026.
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.
dc.identifier.citedreferenceKhrabrov, A. V., and B. U. Ã . Sonnerup ( 1998 ), Error estimates for minimum variance analysis, J. Geophys. Res., 103 ( A4 ), 6641 â 6651, doi: 10.1029/97JA03731.
dc.identifier.citedreferenceKiehas, S. A., V. Angelopoulos, A. Runov, M. B. Moldwin, and C. Möstl ( 2012 ), On the formation of tilted flux ropes in the Earth’s magnetotail observed with ARTEMIS, J. Geophys. Res., 117, A05231, doi: 10.1029/2011JA017377.
dc.identifier.citedreferenceKiehas, S. A., V. Angelopoulos, A. Runov, and S.â S. Li ( 2013 ), On the azimuthal size of flux ropes near lunar orbit, J. Geophys. Res. Space Physics, 118, 4415 â 4424, doi: 10.1002/jgra.50425.
dc.identifier.citedreferenceLepping, R. P., J. A. Jones, and L. F. Burlaga ( 1990 ), Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95 ( A8 ), 11,957 â 11,965.
dc.identifier.citedreferenceLindsay, S., M. James, E. Bunce, S. Imber, H. Korth, A. Martindale, and T. Yeoman ( 2016 ), MESSENGER Xâ ray observations of magnetosphereâ surface interaction on the nightside of Mercury, Planet. Space Sci., 125, 72 â 79, doi: 10.1016/j.pss.2016.03.005.
dc.identifier.citedreferenceLu, S., et al. ( 2015 ), Dipolarization fronts as earthward propagating flux ropes: A threeâ dimensional global hybrid simulation, J. Geophys. Res. Space Physics, 117, A05231, doi: 10.1002/2015JA021213.
dc.identifier.citedreferenceLundquist, S. ( 1950 ), Magnetohydrostatic Fields, Ark. Fys., 2, 361 â 365.
dc.identifier.citedreferenceMcPherron, R. L., B. C. T Russell, M. G. Kivelson, and P. J. Coleman ( 1973 ), Substorms in space: The correlation between ground and satellite observations of the magnetic field, Radio Sci., 8 ( 11 ), 1059 â 1076.
dc.identifier.citedreferenceMoldwin, M. B., and W. J. Hughes ( 1991 ), Plasmoids as magnetic flux ropes, J. Geophys. Res., 96 ( A8 ), 14,051 â 14,064, doi: 10.1029/91JA01167.
dc.identifier.citedreferenceMoldwin, M. B., and W. J. Hughes ( 1992 ), On the formation and evolution of plasmoids: A survey of ISEE 3 Geotail data, J. Geophys. Res., 97 ( A12 ), 19,259 â 19,282, doi: 10.1029/92JA01598.
dc.identifier.citedreferenceNess, N., K. Behannon, R. Lepping, and Y. Whang ( 1976 ), Observations of Mercury’s magnetic field, Icarus, 28 ( 4 ), 479 â 488, doi: 10.1016/0019-1035(76)90121-4.
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, R. P. Lepping, Y. C. Whang, and K. H. Schatten ( 1974 ), Magnetic field observations near mercury: Preliminary results from Mariner 10, Science, 185 ( 4146 ), 151 â 160.
dc.identifier.citedreferencePetrukovich, A. A. ( 2011 ), Origins of plasma sheet B y, J. Geophys. Res., 116, A07217, doi: 10.1029/2010JA016386.
dc.identifier.citedreferencePoh, G., J. A. Slavin, X. Jia, J. M. Raines, S. M. Imber, W.â J. Sun, D. J. Gershman, G. A. DiBraccio, K. J. Genestreti, and A. W. Smith ( 2017 ), Mercury’s crossâ tail current sheet: Structure, Xâ line location and stress balance, Geophys. Res. Lett., 44, 678 â 686, doi: 10.1002/2016GL071612.
dc.identifier.citedreferencePriest, E. R. ( 1990 ), The equilibrium of magnetic flux ropes, Geophys. Monogr., 58, 1 â 22.
dc.identifier.citedreferenceRichardson, I. G., S. W. H. Cowley, E. W. Hones, and S. J. Bame ( 1987 ), Plasmoidâ associated energetic ion bursts in the deep geomagnetic tail: Properties of plasmoids and the postplasmoid plasma sheet, J. Geophys. Res., 92, 9997 â 10,013, doi: 10.1029/JA092iA09p0999.
dc.identifier.citedreferenceRong, Z. J., A. T. Y. Lui, W. X. Wan, Y. Y. Yang, C. Shen, A. A. Petrukovich, Y. C. Zhang, T. L. Zhang, and Y. Wei ( 2015 ), Time delay of interplanetary magnetic field penetration into Earth’s magnetotail, J. Geophys. Res. Space Physics, 120, 3406 â 3414, doi: 10.1002/2014JA020452.
dc.identifier.citedreferenceSchindler, K. ( 1974 ), A theory of the substorm mechanism, J. Geophys. Res., 79 ( 19 ), 2803 â 2810, doi: 10.1029/JA079i019p02803.
dc.identifier.citedreferenceSibeck, D. G., G. L. Siscoe, J. A. Slavin, E. J. Smith, S. J. Bame, and F. L. Scarf ( 1984 ), Magnetotail flux ropes, Geophys. Res. Lett., 11 ( 10 ), 1090 â 1093, doi: 10.1029/GL011i010p01090.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.