Show simple item record

Perinatal lead (Pb) exposure results in sex and tissue‐dependent adult DNA methylation alterations in murine IAP transposons

dc.contributor.authorMontrose, L.
dc.contributor.authorFaulk, C.
dc.contributor.authorFrancis, J.
dc.contributor.authorDolinoy, D.C.
dc.date.accessioned2017-10-23T17:31:03Z
dc.date.available2018-12-03T15:34:05Zen
dc.date.issued2017-10
dc.identifier.citationMontrose, L.; Faulk, C.; Francis, J.; Dolinoy, D.C. (2017). "Perinatal lead (Pb) exposure results in sex and tissue‐dependent adult DNA methylation alterations in murine IAP transposons." Environmental and Molecular Mutagenesis 58(8): 540-550.
dc.identifier.issn0893-6692
dc.identifier.issn1098-2280
dc.identifier.urihttps://hdl.handle.net/2027.42/138874
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlead (Pb)
dc.subject.otherretrotransposon
dc.subject.othertoxicoepigenetics
dc.subject.otherintracisternal A particle (IAP)
dc.subject.otherDevelopmental Origins of Health and Disease (DOHaD)
dc.subject.otherenvironmental epigenetics
dc.subject.otherDNA methylation
dc.titlePerinatal lead (Pb) exposure results in sex and tissue‐dependent adult DNA methylation alterations in murine IAP transposons
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138874/1/em22119.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138874/2/em22119_am.pdf
dc.identifier.doi10.1002/em.22119
dc.identifier.sourceEnvironmental and Molecular Mutagenesis
dc.identifier.citedreferenceRoss JP, Rand KN, Molloy PL. 2010. Hypomethylation of repeated DNA sequences in cancer. Epigenomics 2: 245 – 269.
dc.identifier.citedreferenceMiousse IR, Chalbot MCG, Lumen A, Ferguson A, Kavouras IG, Koturbash I. 2015. Response of transposable elements to environmental stressors. Mutat Res Rev Mutat 765: 19 – 39.
dc.identifier.citedreferenceMiranda ML, Kim D, Galeano MA, Paul CJ, Hull AP, Morgan SP. 2007. The relationship between early childhood blood lead levels and performance on end‐of‐grade tests. Environ Health Perspect 115: 1242 – 1247.
dc.identifier.citedreferenceMousa AM, Al‐Fadhli AS, Rao MS, Kilarkaje N. 2015. Gestational lead exposure induces developmental abnormalities and up‐regulates apoptosis of fetal cerebellar cells in rats. Drug Chem Toxicol 38: 73 – 83.
dc.identifier.citedreferenceMurphy SK, Adigun A, Huang Z, Overcash F, Wang F, Jirtle RL, Schildkraut JM, Murtha AP, Iversen ES, Hoyo C. 2012. Gender‐specific methylation differences in relation to prenatal exposure to cigarette smoke. Gene 494: 36 – 43.
dc.identifier.citedreferenceMyatt SS, Lam EW. 2007. The emerging roles of forkhead box (fox) proteins in cancer. Nat Rev Cancer 7: 847 – 859.
dc.identifier.citedreferenceOstertag EM, Kazazian HH. 2001. Biology of mammalian l1 retrotransposons. Annu Rev Genet 35: 501 – 538.
dc.identifier.citedreferencePichery C, Bellanger M, Zmirou‐Navier D, Glorennec P, Hartemann P, Grandjean P. 2011. Childhood lead exposure in france: Benefit estimation and partial cost‐benefit analysis of lead hazard control. Environ Health 10: 44
dc.identifier.citedreferenceRebollo R, Miceli‐Royer K, Zhang Y, Farivar S, Gagnier L, Mager DL. 2012. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol 13: R89
dc.identifier.citedreferenceRebollo R, Mager DL. 2016. Methylated DNA immunoprecipitation analysis of mammalian endogenous retroviruses. Methods Mol Biol 1400: 377 – 385.
dc.identifier.citedreferenceReilly MT, Faulkner GJ, Dubnau J, Ponomarev I, Gage FH. 2013. The role of transposable elements in health and diseases of the central nervous system. J Neurosci 33: 17577 – 17586.
dc.identifier.citedreferenceSanchez‐Martin FJ, Lindquist DM, Landero‐Figueroa J, Zhang X, Chen J, Cecil KM, Medvedovic M, Puga A. 2015. Sex‐ and tissue‐specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology 46: 92 – 100.
dc.identifier.citedreferenceSchneider JS, Anderson DW, Kidd SK, Sobolewski M, Cory‐Slechta DA. 2016. Sex‐dependent effects of lead and prenatal stress on post‐translational histone modifications in frontal cortex and hippocampus in the early postnatal brain. Neurotoxicology 54: 65 – 71.
dc.identifier.citedreferenceSenut MC, Cingolani P, Sen A, Kruger A, Shaik A, Hirsch H, Suhr ST, Ruden D. 2012. Epigenetics of early‐life lead exposure and effects on brain development. Epigenomics 4: 665 – 674.
dc.identifier.citedreferenceSharif J, Shinkai Y, Koseki H. 2013. Is there a role for endogenous retroviruses to mediate long‐term adaptive phenotypic response upon environmental inputs? Philos Trans R Soc Lond B Biol Sci 368: 20110340
dc.identifier.citedreferenceSherwani SI, Khan HA. 2015. Role of 5‐hydroxymethylcytosine in neurodegeneration. Gene 570: 17 – 24.
dc.identifier.citedreferenceStein J, Schettler T, Wallinga D, Valenti M. 2002. In harm’s way: Toxic threats to child development. J Dev Behav Pediatr 23: S13 – S22.
dc.identifier.citedreferenceSun HW, Ma DJ, Chao CY, Liu S, Yuan ZB. 2009. Lead distribution in blood and organs of mice exposed to lead by vein injection. Environ Technol 30: 1051 – 1057.
dc.identifier.citedreferenceSuzuki M, Kondo A, Ogino I, Arai H, Tomita T, Sredni ST. 2017. Overexpression of tead4 in atypical teratoid/rhabdoid tumor: New insight to the pathophysiology of an aggressive brain tumor. Pediatr Blood Cancer 64. doi: 10.1002/pbc.26398
dc.identifier.citedreferenceTomat AL, Salazar FJ. 2014. Mechanisms involved in developmental programming of hypertension and renal diseases. Gender differences. Horm Mol Biol Clin Investig 18: 63 – 77.
dc.identifier.citedreferenceTran NT, Huang CH. 2014. A survey of motif finding web tools for detecting binding site motifs in chip‐seq data. Biol Direct 9: 4
dc.identifier.citedreferenceWaterland RA, Jirtle RL. 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23: 5293 – 5300.
dc.identifier.citedreferenceWeinhouse C, Anderson OS, Bergin IL, Vandenbergh DJ, Gyekis JP, Dingman MA, Yang J, Dolinoy DC. 2014. Dose‐dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol a. Environ Health Perspect 122: 485 – 491.
dc.identifier.citedreferenceWu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, Xi C. 2016. Perinatal lead exposure alters gut microbiota composition and results in sex‐specific bodyweight increases in adult mice. Toxicol Sci 151: 324 – 333.
dc.identifier.citedreferenceXi Y, Shen WJ, Ma LL, Zhao M, Zheng JC, Bu SZ, Hino S, Nakao M. 2016. Hmga2 promotes adipogenesis by activating c/ebp beta‐mediated expression of ppar gamma. Biochem Biophys Res Commun 472: 617 – 623.
dc.identifier.citedreferenceZhang Y, Maksakova IA, Gagnier L, de Lagemaat LNV, Mager DL. 2008. Genome‐wide assessments reveal extremely high levels of polymorphism of two active families of mouse endogenous retroviral elements. Plos Genet 4: e1000007.
dc.identifier.citedreferenceAfeiche M, Peterson KE, Sanchez BN, Cantonwine D, Lamadrid‐Figueroa H, Schnaas L, Ettinger AS, Hernández‐Avila M, Hu H, Téllez‐Rojo MM. 2011. Prenatal lead exposure and weight of 0‐ to 5‐year‐old children in mexico city. Environ Health Perspect 119: 1436 – 1441.
dc.identifier.citedreferenceAlmstrup K, Lindhardt Johansen M, Busch AS, Hagen CP, Nielsen JE, Petersen JH, Juul A. 2016. Pubertal development in healthy children is mirrored by DNA methylation patterns in peripheral blood. Sci Rep 6: 28657
dc.identifier.citedreferenceAnderson DW, Mettil W, Schneider JS. 2016. Effects of low level lead exposure on associative learning and memory in the rat: Influences of sex and developmental timing of exposure. Toxicol Lett 246: 57 – 64.
dc.identifier.citedreferenceArgos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul‐Brutus R, Gamble MV, Harper KN, Parvez F, et al. 2015. Gene‐specific differential DNA methylation and chronic arsenic exposure in an epigenome‐wide association study of adults in bangladesh. Environ Health Perspect 123: 64 – 71.
dc.identifier.citedreferenceBakshi A, Herke SW, Batzer MA, Kim J. 2016. DNA methylation variation of human‐specific alu repeats. Epigenetics 11: 163 – 173.
dc.identifier.citedreferenceBarker DJ. 2000. In utero programming of cardiovascular disease. Theriogenology 53: 555 – 574.
dc.identifier.citedreferenceBreton CV, Marsit CJ, Faustman E, Nadeau K, Goodrich JM, Dolinoy DC, Herbstman J, Holland N, LaSalle JM, Schmidt R, et al. 2017. Small‐magnitude effect sizes in epigenetic end points are important in children’s environmental health studies: The children’s environmental health and disease prevention research center’s epigenetics working group. Environ Health Perspect 125: 511 – 526.
dc.identifier.citedreferenceCahill DP, Louis DN, Cairncross JG. 2015. Molecular background of oligodendroglioma: 1p/19q, idh, tert, cic and fubp1. CNS Oncol 4: 287 – 294.
dc.identifier.citedreferenceCai WY, Lin LY, Hao H, Zhang SM, Ma F, Hong XX, Zhang H, Liu QF, Ye GD, Sun GB, et al. 2017. Yes‐associated protein/tea domain family member and hepatocyte nuclear factor 4‐alpha (hnf4alpha) repress reciprocally to regulate hepatocarcinogenesis in rats and mice. Hepatology 65: 1206 – 1221.
dc.identifier.citedreferenceCDC. 2016. Cdc lead homepage. Available: http://www.cdc.gov/nceh/lead 2016].
dc.identifier.citedreferenceChen Z, Myers R, Wei T, Bind E, Kassim P, Wang G, Ji Y, Hong X, Caruso D, Bartell T, et al. 2014. Placental transfer and concentrations of cadmium, mercury, lead, and selenium in mothers, newborns, and young children. J Expo Sci Environ Epidemiol 24: 537 – 544.
dc.identifier.citedreferenceCohn J, Cox C, Cory‐Slechta DA. 1993. The effects of lead exposure on learning in a multiple repeated acquisition and performance schedule. Neurotoxicology 14: 329 – 346.
dc.identifier.citedreferenceDietert RR, Lee JE, Hussain I, Piepenbrink M. 2004. Developmental immunotoxicology of lead. Toxicol Appl Pharmacol 198: 86 – 94.
dc.identifier.citedreferenceDuan J, Bao X, Ma X, Zhang Y, Ni D, Wang H, Zhang F, Du Q, Fan Y, Chen J, et al. 2017. Upregulation of far upstream element‐binding protein 1 (fubp1) promotes tumor proliferation and tumorigenesis of clear cell renal cell carcinoma. PLoS One 12: e0169852
dc.identifier.citedreferenceFaulk C, Barks A, Dolinoy DC. 2013a. Phylogenetic and DNA methylation analysis reveal novel regions of variable methylation in the mouse iap class of transposons. BMC Genomics 14: 48
dc.identifier.citedreferenceFaulk C, Barks A, Liu K, Goodrich JM, Dolinoy DC. 2013b. Early‐life lead exposure results in dose‐ and sex‐specific effects on weight and epigenetic gene regulation in weanling mice. Epigenomics 5: 487 – 500.
dc.identifier.citedreferenceFaulk C, Barks A, Sanchez BN, Zhang Z, Anderson OS, Peterson KE, Dolinoy DC. 2014a. Perinatal lead (pb) exposure results in sex‐specific effects on food intake, fat, weight, and insulin response across the murine life‐course. PLoS One 9: e104273
dc.identifier.citedreferenceFaulk C, Liu K, Barks A, Goodrich JM, Dolinoy DC. 2014b. Longitudinal epigenetic drift in mice perinatally exposed to lead. Epigenetics 9: 934 – 941.
dc.identifier.citedreferenceGonzalez‐Cossio T, Peterson KE, Sanin LH, Fishbein E, Palazuelos E, Aro A, Hernández‐Avila M, Hu H. 1997. Decrease in birth weight in relation to maternal bone‐lead burden. Pediatrics 100: 856 – 862.
dc.identifier.citedreferenceGoodrich JM, Sanchez BN, Dolinoy DC, Zhang Z, Hernandez‐Avila M, Hu H, Peterson KE, Téllez‐Rojo MM. 2015. Quality control and statistical modeling for environmental epigenetics: A study on in utero lead exposure and DNA methylation at birth. Epigenetics 10: 19 – 30.
dc.identifier.citedreferenceGross DN, van den Heuvel AP, Birnbaum MJ. 2008. The role of foxo in the regulation of metabolism. Oncogene 27: 2320 – 2336.
dc.identifier.citedreferenceGrunau C, Clark SJ, Rosenthal A. 2001. Bisulfite genomic sequencing: Systematic investigation of critical experimental parameters. Nucleic Acids Res 29: E65 – E65.
dc.identifier.citedreferenceGuo S. 2014. Insulin signaling, resistance, and the metabolic syndrome: Insights from mouse models into disease mechanisms. J Endocrinol 220: T1 – T23.
dc.identifier.citedreferenceGupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. 2007. Quantifying similarity between motifs. Genome Biol 8: R24
dc.identifier.citedreferenceHajkova P, Erhardt S, Lane N, Haaf T, El‐Maarri O, Reik W, Walter J, Surani MA. 2002. Epigenetic reprogramming in mouse primordial germ cells. Mech Develop 117: 15 – 23.
dc.identifier.citedreferenceHanna‐Attisha M, LaChance J, Sadler RC, Champney Schnepp A. 2016. Elevated blood lead levels in children associated with the flint drinking water crisis: A spatial analysis of risk and public health response. Am J Public Health 106: 283 – 290.
dc.identifier.citedreferenceIavicoli I, Carelli G, Stanek EJ, Castellino N, Calabrese EJ. 2004. Effects of low doses of dietary lead on puberty onset in female mice. Reprod Toxicol 19: 35 – 41.
dc.identifier.citedreferenceKile ML, Fang S, Baccarelli AA, Tarantini L, Cavallari J, Christiani DC. 2013. A panel study of occupational exposure to fine particulate matter and changes in DNA methylation over a single workday and years worked in boilermaker welders. Environ Health 12: 47
dc.identifier.citedreferenceLane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W. 2003. Resistance of iaps to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35: 88 – 93.
dc.identifier.citedreferenceLanphear BP, Dietrich K, Auinger P, Cox C. 2000. Cognitive deficits associated with blood lead concentrations <10 microg/dl in us children and adolescents. Public Health Rep 115: 521 – 529.
dc.identifier.citedreferenceLeasure JL, Giddabasappa A, Chaney S, Johnson JE Jr., Pothakos K, Lau YS, Fox DA. 2008. Low‐level human equivalent gestational lead exposure produces sex‐specific motor and coordination abnormalities and late‐onset obesity in year‐old mice. Environ Health Perspect 116: 355 – 361.
dc.identifier.citedreferenceLees‐Murdock DJ, Walsh CP. 2008. DNA methylation reprogramming in the germ line. Adv Exp Med Biol 626: 1 – 15.
dc.identifier.citedreferenceLittle BB, Spalding S, Walsh B, Keyes DC, Wainer J, Pickens S, Royster M, Villanacci J, Gratton T. 2009. Blood lead levels and growth status among african‐american and hispanic children in Dallas, Texas—1980 and 2002: Dallas lead project ii. Ann Hum Biol 36: 331 – 341.
dc.identifier.citedreferenceLuca G, Haba‐Rubio J, Dauvilliers Y, Lammers GJ, Overeem S, Donjacour CE, Mayer G, Javidi S, Iranzo A, Santamaria J, et al. 2013. Clinical, polysomnographic and genome‐wide association analyses of narcolepsy with cataplexy: A european narcolepsy network study. J Sleep Res 22: 482 – 495.
dc.identifier.citedreferenceMaccani JZ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, Marsit CJ. 2015. Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect 123: 723 – 729.
dc.identifier.citedreferenceMarkowski DN, Thies HW, Gottlieb A, Wenk H, Wischnewsky M, Bullerdiek J. 2013. Hmga2 expression in white adipose tissue linking cellular senescence with diabetes. Genes & Nutrition 8: 449 – 456.
dc.identifier.citedreferenceMaunakea AK, Chepelev I, Zhao KJ. 2010. Epigenome mapping in normal and disease states. Circ Res 107: 327 – 339.
dc.identifier.citedreferenceMcCarthy MM, Arnold AP, Ball GF, Blaustein JD, De Vries GJ. 2012. Sex differences in the brain: The not so inconvenient truth. J Neurosci 32: 2241 – 2247.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.