Show simple item record

Dendriticâ cellâ based immunotherapy evokes potent antiâ tumor immune responses in CD105+ human renal cancer stem cells

dc.contributor.authorZhang, Xiao‐fei
dc.contributor.authorWeng, De‐sheng
dc.contributor.authorPan, Ke
dc.contributor.authorZhou, Zi‐qi
dc.contributor.authorPan, Qiu‐zhong
dc.contributor.authorZhao, Jing‐jing
dc.contributor.authorTang, Yan
dc.contributor.authorJiang, Shan‐shan
dc.contributor.authorChen, Chang‐long
dc.contributor.authorLi, Yong‐qiang
dc.contributor.authorZhang, Hong‐xia
dc.contributor.authorChang, Alfred E.
dc.contributor.authorWicha, Max S.
dc.contributor.authorZeng, Yi‐xin
dc.contributor.authorLi, Qiao
dc.contributor.authorXia, Jian‐chuan
dc.date.accessioned2017-10-23T17:31:08Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-11
dc.identifier.citationZhang, Xiao‐fei ; Weng, De‐sheng ; Pan, Ke; Zhou, Zi‐qi ; Pan, Qiu‐zhong ; Zhao, Jing‐jing ; Tang, Yan; Jiang, Shan‐shan ; Chen, Chang‐long ; Li, Yong‐qiang ; Zhang, Hong‐xia ; Chang, Alfred E.; Wicha, Max S.; Zeng, Yi‐xin ; Li, Qiao; Xia, Jian‐chuan (2017). "Dendriticâ cellâ based immunotherapy evokes potent antiâ tumor immune responses in CD105+ human renal cancer stem cells." Molecular Carcinogenesis 56(11): 2499-2511.
dc.identifier.issn0899-1987
dc.identifier.issn1098-2744
dc.identifier.urihttps://hdl.handle.net/2027.42/138877
dc.publisherWiley Periodicals, Inc.
dc.subject.othercancer stem cells
dc.subject.otherCD105
dc.subject.othercellular immunotherapy
dc.subject.otherdendritic cell
dc.subject.otherrenal cell carcinoma
dc.titleDendriticâ cellâ based immunotherapy evokes potent antiâ tumor immune responses in CD105+ human renal cancer stem cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138877/1/mc22697.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138877/2/mc22697_am.pdf
dc.identifier.doi10.1002/mc.22697
dc.identifier.sourceMolecular Carcinogenesis
dc.identifier.citedreferenceHuang AH, Chen YK, Chan AW, et al. Isolation and characterization of normal hamster buccal pouch stem/stromal cellsâ potential oral cancer stem/stemâ like cell model. Oral Oncol. 2009; 45: e189 â e195.
dc.identifier.citedreferenceSu Z, Dannull J, Heiser A, et al. Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNAâ transfected dendritic cells. Cancer Res. 2003; 63: 2127 â 2133.
dc.identifier.citedreferencePellegatta S, Poliani PL, Corno D, et al. Neurospheres enriched in cancer stemâ like cells are highly effective in eliciting a dendritic cellâ mediated immune response against malignant gliomas. See comment in PubMed Commons below. Cancer Res. 2006; 66: 10247 â 10252.
dc.identifier.citedreferenceKim JH, Lee Y, Bae YS, et al. Phase I/II study of immunotherapy using autologous tumor lysateâ pulsed dendritic cells in patients with metastatic renal cell carcinoma. Clin Immunol. 2007; 125: 257 â 267.
dc.identifier.citedreferenceBerntsen A, Trepiakas R, Wenandy L, et al. Therapeutic dendritic cell vaccination of patients with metastatic renal cell carcinoma: a clinical phase 1/2 trial. J Immunother. 2008; 31: 771 â 780.
dc.identifier.citedreferenceSchwaab T, Schwarzer A, Wolf B, et al. Clinical and immunologic effects of intranodal autologous tumor lysateâ dendritic cell vaccine with aldesleukin (interleukin 2) and IFNâ α2a therapy in metastatic renal cell carcinoma patients. Clin Cancer Res. 2009; 15: 4986 â 4992.
dc.identifier.citedreferenceFlörcken A, Kopp J, van Lessen A, et al. Allogeneic partially HLAâ matched dendritic cells (DC) as a vaccine in metastatic renal cell cancer (mRCC): final analysis of a clinical phase I/II study. J Clin Oncol. 2012; 30: e15053.
dc.identifier.citedreferenceHirohashi Y, Torigoe T, Inoda S, et al. Immune response against tumor antigens expressed on human cancer stemâ like cells/tumorâ initiating cells. Immunotherapy. 2010; 2: 201 â 211.
dc.identifier.citedreferenceLi X, Zhang Z, Lin G, et al. Antigenâ specific Tâ cell response from dendritic cell vaccination using cancer stemâ like cellâ associated antigens. Stem Cells. 2009; 27: 1734 â 1740.
dc.identifier.citedreferenceWeng D, Song B, Durfee J, et al. Induction of cytotoxic T lymphocytes against ovarian cancerâ initiating cells. Int J Cancer. 2011; 129: 1990 â 2001.
dc.identifier.citedreferenceSun JC, Pan K, Chen MS, et al. Dendritic cellsâ mediated CTLs targeting hepatocellular carcinoma stem cells. Cancer Biol Ther. 2010; 10: 368 â 375.
dc.identifier.citedreferencePan QZ, Pan K, Wang QJ, et al. Annexin A3 as a potential target for immunotherapy of liver cancer stemâ like cells. Stem Cells. 2015; 33: 354 â 366.
dc.identifier.citedreferenceDallas NA, Samuel S, Xia L, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008; 14: 1931 â 1937.
dc.identifier.citedreferenceHu D, Wang X, Mao Y, et al. Identification of CD105 (endoglin)â positive stemâ like cells in rhabdoid meningioma. J Neurooncol. 2012; 106: 505 â 517.
dc.identifier.citedreferenceZiebarth AJ, Nowsheen S, Steg AD, et al. Endoglin (CD105) contributes to platinum resistance and is a target for tumorâ specific therapy in epithelial ovarian cancer. Clin Cancer Res. 2013; 19: 170 â 182.
dc.identifier.citedreferenceTomuleasa C, Soritau O, Rusâ Ciuca D, et al. Functional and molecular characterization of glioblastoma multiformeâ derived cancer stem cells. J BUON. 2010; 15: 583 â 591.
dc.identifier.citedreferenceRoyerâ Pokora B, Busch M, Beier M, et al. Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum Mol Genet. 2010; 19: 1651 â 1668.
dc.identifier.citedreferenceChen W, Dong J, Haiech J, et al. Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int. 2016; 2016: 1740936.
dc.identifier.citedreferenceCrea F, Danesi R, Farrar WL. Cancer stem cell epigenetics and chemoresistance. Epigenomics. 2009; 1: 63 â 79.
dc.identifier.citedreferenceZhao J. Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther. 2016; 160: 145 â 158.
dc.identifier.citedreferenceNorazizah Shafee, Christopher Smith R, Shuanzeng Wei, et al. Cancer stem cells contribute to cisplatin resistance in Brca1/p53â Mediated mouse mammary tumors. Cancer Res. 2008; 68: 3243 â 3250.
dc.identifier.citedreferenceCho K, Wang X, Nie S, et al. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008; 14: 1310 â 1316.
dc.identifier.citedreferenceLaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010; 16: 3121 â 3129.
dc.identifier.citedreferenceLacerda L, Pusztai L, Woodward WA. The role of tumor initiating cells in drug resistance of breast cancer: implications for future therapeutic approaches. Drug Resist Updat. 2010; 13: 99 â 108.
dc.identifier.citedreferenceSharma RK, Chheda ZS, Jala VR, et al. Regulation of cytotoxic Tâ Lymphocyte trafficking to tumors by chemoattractants: implications for immunotherapy. Expert Rev Vaccines. 2015; 14: 537 â 549.
dc.identifier.citedreferenceLesterhuis WJ, Haanen JB, Punt CJ. Cancer immunotherapyâ revisited. Nat Rev Drug Discov. 2011; 10: 591 â 600.
dc.identifier.citedreferenceWang Z, Li Y, Ahmad A, et al. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat. 2010; 13: 109 â 118.
dc.identifier.citedreferenceZhong Y, Guan K, Guo S, et al. Spheres derived from the human SKâ RCâ 42 renal cell carcinoma cell line are enriched in cancer stem cells. Cancer Lett. 2010; 299: 150 â 160.
dc.identifier.citedreferenceCastriconi R, Daga A, Dondero A, et al. NK cells recognize and kill human glioblastoma cells with stem cellâ like properties. J Immunol. 2009; 182: 3530 â 3539.
dc.identifier.citedreferencede Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nar Biotech. 2005; 23: 1407 â 1413.
dc.identifier.citedreferenceNestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptideâ or tumorlysateâ pulsed dendritic cells. Nat Med. 1997; 4: 328 â 333.
dc.identifier.citedreferenceFields RC, Shimizu K, Mulé JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA. 1998; 95: 9482 â 9487.
dc.identifier.citedreferenceBanchereau J, Palucka AK, Dhodapkar M, et al. Melanoma to CD34 + progenitorâ derived dendritic cell vaccine immune and clinical responses in patients with metastatic. Cancer Res. 2001; 61: 6451 â 6458.
dc.identifier.citedreferenceXu Q, Liu G, Yuan X, et al. Antigenâ specificâ cell response from dendritic cell vaccination using cancer stemâ like cellassociated antigens. Stem Cells. 2009; 27: 1734 â 1740.
dc.identifier.citedreferenceAdornoâ Cruz V, Kibria G, Liu X, et al. Cancer stem cells: targeting the roots of cancer, seeds of metastasis, and sources of therapy resistance. Cancer Res. 2015; 75: 924 â 929.
dc.identifier.citedreferenceTheodoropoulos PA, Polioudaki H, Agelaki S, et al. Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett. 2010; 288: 99 â 106.
dc.identifier.citedreferenceClevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011; 17: 313 â 319.
dc.identifier.citedreferenceBjerkvig R, Johansson M, Miletic H, Niclou SP. Cancer stem cells and angiogenesis. Semin Cancer Biol. 2009; 19: 279 â 284.
dc.identifier.citedreferenceKreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014; 14: 275 â 291.
dc.identifier.citedreferenceAlâ Hajj M, Wicha MS, Benitoâ Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003; 100: 3983 â 3988.
dc.identifier.citedreferenceSingh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004; 432: 396 â 401.
dc.identifier.citedreferenceLi C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007; 67: 1030 â 1037.
dc.identifier.citedreferenceCollins AT, Berry PA, Hyde C, et al. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005; 65: 10946 â 10951.
dc.identifier.citedreferenceBapat SA, Mali AM, Koppikar CB, et al. Stem and progenitorâ like cells contribute to the aggressive behaviour of human epithelial ovarian cancer. Cancer Res. 2005; 65: 3025 â 3029.
dc.identifier.citedreferenceFang D, Nguyen TK, Leishear K, et al. A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 2005; 65: 9328 â 9337.
dc.identifier.citedreferenceBussolati B, Bruno S, Grange C, et al. Identification of a tumorâ initiating stem cell population in human renal carcinomas. FASEB J. 2008; 22: 3696 â 3705.
dc.identifier.citedreferenceMyszczyszyn A, Czarnecka AM, Matak D, et al. The role of hypoxia and cancer stem cells in renal cell carcinoma pathogenesis. Stem Cell Rev Rep. 2015; 11: 919 â 943.
dc.identifier.citedreferenceAxelson H, Johansson ME. Renal stem cells and their implications for kidney cancer. Semin Cancer Biol. 2013; 23: 56 â 61.
dc.identifier.citedreferenceBu Y, Cao D. The origin of cancer stem cells. Fronti Biosci. 2012; 4: 819 â 830.
dc.identifier.citedreferenceShen H, Boyer M, Cheng T. Flow cytometryâ based cell cycle measurement of mouse hematopoietic stem and progenitor cells. Methods Mol Biol. 2008; 430: 77 â 86.
dc.identifier.citedreferenceKlonisch T, Wiechec E, Hombachâ Klonisch S, et al. Cancer stem cell markers in common cancersâ therapeutic implications. Trends Mol Med. 2008; 14: 450 â 460.
dc.identifier.citedreferenceWang Z, Li Y, Ahmad A, et al. Targeting miRNAs involved in cancer stem cell and EMT regulation: an emerging concept in overcoming drug resistance. Drug Resist Updat. 2010; 13: 109 â 118.
dc.identifier.citedreferenceLiu J, Kopecková P, Bühler P, et al. Biorecognition and subcellular trafficking of HPMA copolymerâ antiâ PSMA antibody conjugates by prostate cancer cells. Mol Pharm. 2009; 6: 959 â 970.
dc.identifier.citedreferenceCuriel TJ. Immunotherapy: a useful strategy to help combat multidrug resistance. Drug Resist Updates. 2012; 15: 106 â 113.
dc.identifier.citedreferenceJin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med. 2006; 12: 1167 â 1174.
dc.identifier.citedreferenceJin L, Lee EM, Ramshaw HS, et al. Monoclonal antibodyâ mediated targeting of CD123, ILâ 3 receptor α chain, eliminates human acute myeloid leukemic stem cells. Cell Stem Cell. 2009; 5: 31 â 42.
dc.identifier.citedreferenceKikushige Y, Shima T, Takayanagi S, et al. TIMâ 3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 2010; 7: 708 â 717.
dc.identifier.citedreferenceChao MP, Alizadeh AA, Tang C, et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 2011; 71: 1374 â 1384.
dc.identifier.citedreferenceNing N, Pan Q, Zheng F, et al. Cancer stem cell vaccination confers significant antitumor immunity. Cancer Res. 2012; 72: 1853 â 1864.
dc.identifier.citedreferenceLu L, Tao H, Chang AE, et al. Cancer stem cell vaccine inhibits metastases of primary tumors and induces humoral immune responses against cancer stem cells. Oncoimmunology. 2015; 4: e990767.
dc.identifier.citedreferenceBoiko AD, Razorenova OV, van de Rijn M, et al. Human melanomaâ initiating cells express neural crest nerve growth factor receptor CD271. Nature. 2010; 466: 133 â 137.
dc.identifier.citedreferenceBusse A, Letsch A, Fusi A, et al. Characterization of small spheres derived from various solid tumor cell lines: are they suitable targets for T cells. Clin Exp Metastasis. 2013; 30: 781 â 791.
dc.identifier.citedreferenceKantoff PW, Higano CS, Shore ND, et al. Sipuleucelâ T immunotherapy for castrationâ resistant prostate cancer. New Eng J Med. 2010; 363: 411 â 422.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.