Show simple item record

Coupling between Mercury and its nightside magnetosphere: Crossâ tail current sheet asymmetry and substorm current wedge formation

dc.contributor.authorPoh, Gangkai
dc.contributor.authorSlavin, James A.
dc.contributor.authorJia, Xianzhe
dc.contributor.authorRaines, Jim M.
dc.contributor.authorImber, Suzanne M.
dc.contributor.authorSun, Wei‐jie
dc.contributor.authorGershman, Daniel J.
dc.contributor.authorDiBraccio, Gina A.
dc.contributor.authorGenestreti, Kevin J.
dc.contributor.authorSmith, Andy W.
dc.date.accessioned2017-10-23T17:31:10Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-08
dc.identifier.citationPoh, Gangkai; Slavin, James A.; Jia, Xianzhe; Raines, Jim M.; Imber, Suzanne M.; Sun, Wei‐jie ; Gershman, Daniel J.; DiBraccio, Gina A.; Genestreti, Kevin J.; Smith, Andy W. (2017). "Coupling between Mercury and its nightside magnetosphere: Crossâ tail current sheet asymmetry and substorm current wedge formation." Journal of Geophysical Research: Space Physics 122(8): 8419-8433.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/138879
dc.description.abstractWe analyzed MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetic field and plasma measurements taken during 319 crossings of Mercury’s crossâ tail current sheet. We found that the measured BZ in the current sheet is higher on the dawnside than the duskside by a factor of â 3 and the asymmetry decreases with downtail distance. This result is consistent with expectations based upon MHD stress balance. The magnetic fields threading the more stretched current sheet in the duskside have a higher plasma beta than those on the dawnside, where they are less stretched. This asymmetric behavior is confirmed by mean current sheet thickness being greatest on the dawnside. We propose that heavy planetary ion (e.g., Na+) enhancements in the duskside current sheet provides the most likely explanation for the dawnâ dusk current sheet asymmetries. We also report the direct measurement of Mercury’s substorm current wedge (SCW) formation and estimate the total current due to pileup of magnetic flux to be â 11 kA. The conductance at the foot of the field lines required to close the SCW current is found to be â 1.2 S, which is similar to earlier results derived from modeling of Mercury’s Region 1 fieldâ aligned currents. Hence, Mercury’s regolith is sufficiently conductive for the current to flow radially then across the surface of Mercury’s highly conductive iron core. Mercury appears to be closely coupled to its nightside magnetosphere by mass loading of upward flowing heavy planetary ions and electrodynamically by fieldâ aligned currents that transfer momentum and energy to the nightside auroral oval crust and interior. Heavy planetary ion enhancements in Mercury’s duskside current sheet provide explanation for crossâ tail asymmetries found in this study. The total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be â 11 kA and 1.2 S. Mercury is coupled to magnetotail by mass loading of heavy ions and fieldâ aligned currents driven by reconnectionâ related fast plasma flow.Key PointsHeavy planetary ion enhancements in Mercury’s duskside current sheet provide explanation for crossâ tail asymmetries found in this studyThe total current due to the pileup of magnetic flux and conductance required to close the SCW current is found to be almost equal to 11 kA and 1.2 SMercury is coupled to magnetotail by mass loading of heavy ions and fieldâ aligned currents driven by reconnectionâ related fast plasma flow
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetotail
dc.subject.othersubstorm current wedge
dc.subject.otherasymmetry
dc.subject.othercrossâ tail current sheet
dc.subject.otherMercury
dc.titleCoupling between Mercury and its nightside magnetosphere: Crossâ tail current sheet asymmetry and substorm current wedge formation
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138879/1/jgra53698.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138879/2/jgra53698_am.pdf
dc.identifier.doi10.1002/2017JA024266
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceShay, M. A., and M. Swisdak ( 2004 ), Threeâ species collisionless reconnection: Effect of O + on magnetotail reconnection, Phys. Rev. Lett., 93, 175001, doi: 10.1103/PhysRevLett.93.175001.
dc.identifier.citedreferenceOgilvie, K. W., J. D. Scudder, V. M. Vasyliunas, R. E. Hartle, and G. L. Siscoe ( 1977 ), Observations at the planet Mercury by the plasma electron experiment: Mariner 10, J. Geophys. Res., 82, 1807 â 1824, doi: 10.1029/JA082i013p01807.
dc.identifier.citedreferenceOhtani, S., M. Nosé, S. P. Christon, and A. T. Y. Lui ( 2011 ), Energetic O + and H + ions in the plasma sheet: Implications for the transport of ionospheric ions, J. Geophys. Res., 116, A10211, doi: 10.1029/2011JA016532.
dc.identifier.citedreferencePeterson, W. K., R. D. Sharp, E. G. Shelley, R. G. Johnson, and H. Balsiger ( 1981 ), Energetic ion composition of the plasma sheet, J. Geophys. Res., 86, 761 â 767, doi: 10.1029/JA086iA02p00761.
dc.identifier.citedreferencePetrukovich, A. A., A. V. Artemyev, H. V. Malova, V. Y. Popov, R. Nakamura, and L. M. Zelenyi ( 2011 ), Embedded current sheets in the Earth’s magnetotail, J. Geophys. Res., 116, A00I25, doi: 10.1029/2010JA015749.
dc.identifier.citedreferencePoh, G., J. A. Slavin, X. Jia, J. M. Raines, S. M. Imber, W.â J. Sun, D. J. Gershman, G. A. DiBraccio, K. J. Genestreti, and A. W. Smith ( 2017 ), Mercury’s crossâ tail current sheet: Structure, Xâ line location and stress balance, Geophys. Res. Lett., 44, 678 â 686, doi: 10.1002/2016GL071612.
dc.identifier.citedreferencePritchett, P. L., and F. V. Coroniti ( 1992 ), Formation and stability of the selfâ consistent oneâ dimensional tail current sheet, J. Geophys. Res., 9716, 773.
dc.identifier.citedreferenceRaines, J. M., et al. ( 2013 ), Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations, J. Geophys. Res Space Physics, 118, 1604 â 1619, doi: 10.1029/2012JA018073.
dc.identifier.citedreferenceRong, Z. J., W. X. Wan, C. Shen, X. Li, M. W. Dunlop, A. A. Petrukovich, T. L. Zhang, and E. Lucek ( 2011 ), Statistical survey on the magnetic structure in magnetotail current sheets, J. Geophys. Res., 116, A09218, doi: 10.1029/2011JA016489.
dc.identifier.citedreferenceRong, Z. J., S. Barabash, G. Stenberg, Y. Futaana, T. L. Zhang, W. X. Wan, Y. Wei, X. D. Wang, L. H. Chai, and J. Zhong ( 2015 ), The flapping motion of the Venusian magnetotail: Venus Express observations, J. Geophys. Res Space Physics, 120, 5593 â 5602, doi: 10.1002/2015JA021317.
dc.identifier.citedreferenceShiokawa, K., W. Baumjohann, and G. Haerendel ( 1997 ), Braking of highâ speed flows in the nearâ Earth tail, Geophys. Res. Lett., 24, 1179 â 1182, doi: 10.1029/97GL01062.
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind standâ off distance at Mercury, J. Geophys. Res., 84, 2076 â 2082, doi: 10.1029/JA084iA05p02076.
dc.identifier.citedreferenceSlavin, J. A., E. J. Smith, D. G. Sibeck, D. N. Baker, R. D. Zwickl, and S.â I. Akasofu ( 1985 ), An ISEE 3 study of average and substorm conditions in the distant magnetotail, J. Geophys. Res., 90, 10,875 â 10,895.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, Science, 324, 606 â 610, doi: 10.1126/science.1172011.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail, Science, 329, 665 â 668, doi: 10.1126/science.1188067.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012 ), MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, doi: 10.1029/2011JA016900.
dc.identifier.citedreferenceSmith, A. W., C. M. Jackman, and M. F. Thomsen ( 2016 ), Magnetic reconnection in Saturn’s magnetotail: A comprehensive magnetic field survey, J. Geophys. Res. Space Physics, 121, 2984 â 3005, doi: 10.1002/2015JA022005.
dc.identifier.citedreferenceSun, W.â J., et al. ( 2015 ), MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail, Geophys. Res. Lett., 42, 3692 â 3699, doi: 10.1002/2015GL064052.
dc.identifier.citedreferenceSun, W. J., S. Y. Fu, J. A. Slavin, J. M. Raines, Q. G. Zong, G. K. Poh, and T. H. Zurbuchen ( 2016 ), Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations, J. Geophys. Res. Space Physics, 121, 7590 â 7607, doi: 10.1002/2016JA022787.
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of dipolarization events in Mercury’s magnetotail, J. Geophys. Res., 117, A00M03, doi: 10.1029/2012JA017756.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ), Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100, 5599 â 5612, doi: 10.1029/94JA03193.
dc.identifier.citedreferenceVasko, I. Y., A. A. Petrukovich, A. V. Artemyev, R. Nakamura, and L. M. Zelenyi ( 2015 ), Earth’s distant magnetotail current sheet near and beyond lunar orbit, J. Geophys. Res. Space Physics, 120, 8663 â 8680, doi: 10.1002/2015JA021633.
dc.identifier.citedreferenceVolwerk, M., et al. ( 2013 ), Comparative magnetotail flapping: An overview of selected events at Earth, Jupiter and Saturn, Ann. Geophys., 31, 817 â 833, doi: 10.5194/angeoâ 31â 817â 2013.
dc.identifier.citedreferenceWalsh, A. P., et al. ( 2017 ), Dawnâ dusk asymmetries in the coupled solar windâ magnetosphereâ ionosphere system: A review, Ann. Geophys., 32, 705 â 737, doi: 10.5194/angeoâ 32â 705â 2014.
dc.identifier.citedreferenceWang, C.â P., L. R. Lyons, M. W. Chen, and F. R. Toffoletto ( 2004 ), Modeling the transition of the inner plasma sheet from weak to enhanced convection, J. Geophys. Res., 109, A12202, doi: 10.1029/2004JA010591.
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 â 2227, doi: 10.1002/jgra.50237.
dc.identifier.citedreferenceZhang, B., O. J. Brambles, W. Lotko, J. E. Ouellette, and J. G. Lyon ( 2016 ), The role of ionospheric O + outflow in the generation of earthward propagating plasmoids, J. Geophys. Res. Space Physics, 121, 1425 â 1435, doi: 10.1002/2015JA021667.
dc.identifier.citedreferenceZurbuchen, T. H., et al. ( 2011 ), MESSENGER observations of the spatial distribution of planetary ions near Mercury, Science, 333, 1862 â 1865, doi: 10.1126/science.1211302.
dc.identifier.citedreferenceAkasofu, S.â I. ( 1964 ), The development of the auroral substorm, Planet. Space Sci., 12 ( 4 ), 273 â 282, doi: 10.1016/0032â 0633(64)90151â 5.
dc.identifier.citedreferenceAlexeev, I. I., et al. ( 2010 ), Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys, Icarus, 209, 23 â 39, doi: 10.1016/j.icarus.2010.01.024.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The Magnetometer instrument on MESSENGER, Space Sci. Rev., 131 ( 1â 4 ), 417 â 450, doi: 10.1007/s11214â 007â 9246â 7.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. A. Slavin, S. C. Solomon, R. L. McNutt Jr., J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333 ( 6051 ), 1859 â 1862, doi: 10.1126/science.1211001.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, J. A. Slavin, R. M. Winslow, R. J. Phillips, S. C. Solomon, and R. L. McNutt Jr. ( 2014 ), Steadyâ state fieldâ aligned currents at ercury, Geophys. Res. Lett., 41, 7444 â 7452, doi: 10.1002/2014GL061677.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma pectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131 ( 1â 4 ), 523 â 556, doi: 10.1007/s11214â 007â 9272â 5.
dc.identifier.citedreferenceArridge, C. S., M. Kane, N. Sergis, K. K. Khurana, and C. M. Jackman ( 2015 ), Sources of local time asymmetries in magnetodiscs, Space Sci. Rev., 187 ( 1 ), 301 â 333, doi: 10.1007/s11214â 015â 0145â z.
dc.identifier.citedreferenceArtemyev, A. V., A. A. Petrukovich, R. Nakamura, and L. M. Zelenyi ( 2011 ), Cluster statistics of thin current sheets in the Earth magnetotail: Specifics of the dawn flank, proton temperature profiles and electrostatic effects, J. Geophys. Res., 116, A09233, doi: 10.1029/2011JA016801.
dc.identifier.citedreferenceArtemyev, A. V., V. Angelopoulos, and A. Runov ( 2016 ), On the radial force balance in the quiet time magnetotail current sheet, J. Geophys. Res. Space Physics, 121, 4017 â 4026, doi: 10.1002/2016JA022480.
dc.identifier.citedreferenceBaker, D. N., E. W. Hones, D. T. Young, and J. Birn ( 1982 ), The possible role of ionospheric oxygen in the initiation and development of plasma sheet instabilities, Geophys. Res. Lett., 9, 1337 â 1340, doi: 10.1029/GL009i012p01337.
dc.identifier.citedreferenceBaumjohann, W., G. Paschmann, and H. Lühr ( 1990 ), Characteristics of highâ speed ion flows in the plasma sheet, J. Geophys. Res., 95, 3801 â 3809, doi: 10.1029/JA095iA04p03801.
dc.identifier.citedreferenceBaumjohann, W., M. Hesse, S. Kokubun, T. Mukai, T. Nagai, and A. A. Petrukovich ( 1999 ), Substorm dipolarization and recovery, J. Geophys. Res., 104, 24995 â 25000, doi: 10.1029/1999JA900282.
dc.identifier.citedreferenceBunce, E. J., and S. W. H. Cowley ( 2001 ), Local time asymmetry of the equatorial current sheet in Jupiter’s magnetosphere, Planet. Space Sci., 49 ( 3â 4 ), 261 â 274, doi: 10.1016/S0032â 0633(00)00147â 1.
dc.identifier.citedreferenceDelcourt, D. C. ( 2013 ), On the supply of heavy planetary material to the magnetotail of Mercury, Ann. Geophys., 31, 1673 â 1679, doi: 10.5194/angeoâ 31â 1673â 2013.
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 â 1008, doi: 10.1002/jgra.50123.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2015a ), MESSENGER observations of flux ropes in Mercury’s magnetotail, Planet. Space Sci., 115, 77 â 89, doi: 10.1016/j.pss.2014.12.016.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2015b ), Magnetotail dynamics at Mars: Initial MAVEN observations, Geophys. Res. Lett., 42, 8828 â 8837, doi: 10.1002/2015GL065248.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2017 ), MAVEN observations of tail current sheet flapping at Mars, J. Geophys. Res. Space Physics, 122, doi: 10.1002/2016JA023488.
dc.identifier.citedreferenceEastwood, J. P., T. D. Phan, M. Ã ieroset, and M. A. Shay ( 2010 ), Average properties of the magnetic reconnection ion diffusion region in the Earth’s magnetotail: The 2001â 2005 Cluster observations and comparison with simulations, J. Geophys. Res., 115, A08215, doi: 10.1029/2009JA014962.
dc.identifier.citedreferenceFairfield, D. H. ( 1979 ), On the average configuraton of the geomagnetic tail, J. Geophys. Res., 84, 1950 â 1958, doi: 10.1029/JA084iA05p01950.
dc.identifier.citedreferenceFairfield, D. H., R. P. Lepping, E. W. Hones Jr., S. J. Bame, and J. R. Asbridge ( 1981 ), Simultaneous measurements of magnetotail dynamics by IMP spacecraft, J. Geophys. Res., 86, 1396 â 1414.
dc.identifier.citedreferenceGenestreti, K. J., S. A. Fuselier, J. Goldstein, T. Nagai, and J. P. Eastwood, ( 2014 ) The location and rate of occurrence of nearâ Earth magnetotail reconnection as observed by Cluster and Geotail, J. Atmos. Sol. Terr. Phys., 121, Part A, 98 â 109.
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2014 ), Ion kinetic properties in Mercury’s preâ midnight plasma sheet, Geophys. Res. Lett., 41, 5740 â 5747, doi: 10.1002/2014GL060468.
dc.identifier.citedreferenceHarris, E. G. ( 1962 ), On a plasma sheath separating regions of oppositely directed magnetic field, Nuovo Cimento, 23, 115 â 121.
dc.identifier.citedreferenceHesse, M., and J. Birn ( 1991 ), On dipolarization and its relation to the substorm current wedge, J. Geophys. Res., 96, 19,417 â 19,426, doi: 10.1029/91JA01953.
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, H. U. Auster, and V. Angelopoulos ( 2011 ), A THEMIS survey of flux ropes and traveling compression regions: Location of the nearâ Earth reconnection site during solar minimum, J. Geophys. Res., 116, A02201, doi: 10.1029/2010JA016026.
dc.identifier.citedreferenceJanhunen, P., and E. Kallio ( 2004 ), Surface conductivity of Mercury provides current closure and may affect magnetospheric symmetry, Ann. Geophys., 22, 1829 â 1837, doi: 10.5194/angeoâ 22â 1829â 2004.
dc.identifier.citedreferenceKarimabadi, H., V. Roytershteyn, C. G. Mouikis, L. M. Kistler, and W. Daughton ( 2011 ), Flushing effect in reconnection: Effects of minority species of oxygen ions, Planet. Space Sci., 59 ( 7 ), 526 â 536.
dc.identifier.citedreferenceKepko, L., et al. ( 2015 ), Substorm current wedge revisited, Space Sci. Rev., 190, 1, doi: 10.1007/s11214â 014â 0124â 9.
dc.identifier.citedreferenceLiang, H., M. Ashourâ Abdalla, G. Lapenta, and R. J. Walker ( 2016 ), Oxygen impacts on dipolarization fronts and reconnection rate, J. Geophys. Res. Space Physics, 121, 1148 â 1166, doi: 10.1002/2015JA021747.
dc.identifier.citedreferenceLindsay, S. T., M. K. James, E. J. Bunce, S. M. Imber, H. Korth, A. Martindale, and T. K. Yeoman ( 2016 ), MESSENGER Xâ ray observations of magnetosphereâ surface interaction on the nightside of Mercury, Planet. Space Sci., 125, 72 â 79, doi: 10.1016/j.pss.2016.03.005.
dc.identifier.citedreferenceLiu, J., V. Angelopoulos, A. Runov, and X.â Z. Zhou ( 2013 ), On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedgelets, J. Geophys. Res. Space Physics, 118, 2000 â 2020, doi: 10.1002/jgra.50092.
dc.identifier.citedreferenceMcPherron, R. L., C. T. Russell, and M. P. Aubry ( 1973 ), Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms, J. Geophys. Res., 78, 3131 â 3149, doi: 10.1029/JA078i016p03131.
dc.identifier.citedreferenceMcPherron, R. L., T.â S. Hsu, J. Kissinger, X. Chu, and V. Angelopoulos ( 2011 ), Characteristics of plasma flows at the inner edge of the plasma sheet, J. Geophys. Res., 116, A00I33, doi: 10.1029/2010JA015923.
dc.identifier.citedreferenceNagai, T., I. Shinohara, S. Zenitani, R. Nakamura, T. K. M. Nakamura, M. Fujimoto, Y. Saito, and T. Mukai ( 2013 ), Threeâ dimensional structure of magnetic reconnection in the magnetotail from Geotail observations, J. Geophys. Res Space Physics, 118, 1667 â 1678, doi: 10.1002/jgra.50247.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.