Show simple item record

Beyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey‐Holden Prostate Cancer Academy Meeting

dc.contributor.authorMiyahira, Andrea K.
dc.contributor.authorCheng, Heather H.
dc.contributor.authorAbida, Wassim
dc.contributor.authorEllis, Leigh
dc.contributor.authorHarshman, Lauren C.
dc.contributor.authorSpratt, Daniel E.
dc.contributor.authorSimons, Jonathan W.
dc.contributor.authorPienta, Kenneth J.
dc.contributor.authorSoule, Howard R.
dc.date.accessioned2017-10-23T17:31:13Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-11
dc.identifier.citationMiyahira, Andrea K.; Cheng, Heather H.; Abida, Wassim; Ellis, Leigh; Harshman, Lauren C.; Spratt, Daniel E.; Simons, Jonathan W.; Pienta, Kenneth J.; Soule, Howard R. (2017). "Beyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey‐Holden Prostate Cancer Academy Meeting." The Prostate 77(15): 1478-1488.
dc.identifier.issn0270-4137
dc.identifier.issn1097-0045
dc.identifier.urihttps://hdl.handle.net/2027.42/138883
dc.publisherWiley Periodicals, Inc.
dc.subject.othertumor genomics
dc.subject.othertherapeutics
dc.subject.othermolecular imaging
dc.subject.othercancer immunotherapy
dc.subject.otherbiomarkers
dc.titleBeyond the androgen receptor II: New approaches to understanding and treating metastatic prostate cancer; Report from the 2017 Coffey‐Holden Prostate Cancer Academy Meeting
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138883/1/pros23424.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138883/2/pros23424_am.pdf
dc.identifier.doi10.1002/pros.23424
dc.identifier.sourceThe Prostate
dc.identifier.citedreferenceHodge JW, Guha C, Neefjes J, Gulley JL. Synergizing radiation therapy and immunotherapy for curing incurable cancers. Opportunities and challenges. Oncology (Williston Park). 2008; 22: 1064 – 1070. Discussion 1075, 1080–1, 1084.
dc.identifier.citedreferenceMalamas AS, Gameiro SR, Knudson KM, Hodge JW. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen‐specific cytotoxic T lymphocytes through calreticulin‐mediated immunogenic modulation. Oncotarget. 2016; 7: 86937 – 86947.
dc.identifier.citedreferenceTwyman‐Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non‐redundant immune mechanisms in cancer. Nature. 2015; 520: 373 – 377.
dc.identifier.citedreferenceDeng L, Liang H, Burnette B, et al. Irradiation and anti‐PD‐L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014; 124: 687 – 695.
dc.identifier.citedreferenceKim JW, Shin KY, Deshpande M, et al. Changes in T cell immunity in patients with metastatic castration resistant prostate treated with Radium‐223 treatment. J Clin Oncol. 2016; 34: 295. https://doi.org/10.1200/jco.2016.34.2_suppl.295JournalofClinicalOncology34,no.2_suppl
dc.identifier.citedreferenceKantoff PW, Higano CS, Shore ND, et al. Sipuleucel‐T immunotherapy for castration‐resistant prostate cancer. New Eng J Med. 2010; 363: 411 – 422.
dc.identifier.citedreferenceSmith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer‐testis antigens in prostate cancer. Cancer Res. 2011; 71: 6785 – 6795.
dc.identifier.citedreferenceSmith HA, Rekoske BT, McNeel DG. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope‐specific CD8+ T‐cell immune responses. Vaccine. 2014; 32: 1707 – 1715.
dc.identifier.citedreferenceRekoske BT, Olson BM, McNeel DG. Antitumor vaccination of prostate cancer patients elicits PD‐1/PD‐L1 regulated antigen‐specific immune responses. Oncoimmunology. 2016; 5: e1165377.
dc.identifier.citedreferenceRekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD‐1 or PD‐L1 blockade restores antitumor efficacy following SSX2 epitope‐Modified DNA vaccine immunization. Cancer Immunol Res. 2015; 3: 946 – 955.
dc.identifier.citedreferenceFleetwood AJ, Lawrence T, Hamilton JA, Cook AD. Granulocyte‐macrophage colony‐stimulating factor (CSF) and macrophage CSF‐dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol. 2007; 178: 5245 – 5252.
dc.identifier.citedreferenceHamilton JA. Colony‐stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008; 8: 533 – 544.
dc.identifier.citedreferenceVerreck FA, de Boer T, Langenberg DM, et al. Human IL‐23‐producing type 1 macrophages promote but IL‐10‐producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci USA. 2004; 101: 4560 – 4565.
dc.identifier.citedreferenceSmall EJ, Reese DM, Um B, Whisenant S, Dixon SC, Figg WD. Therapy of advanced prostate cancer with granulocyte macrophage colony‐stimulating factor. Clin Cancer Res. 1999; 5: 1738 – 1744.
dc.identifier.citedreferenceWei XX, Chan S, Kwek S, et al. Systemic GM‐CSF recruits effector t cells into the tumor microenvironment in localized prostate cancer. Cancer Immunol Res. 2016; 4: 948 – 958.
dc.identifier.citedreferenceTumeh PC, Harview CL, Yearley JH, et al. PD‐1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515: 568 – 571.
dc.identifier.citedreferenceNesslinger NJ, Sahota RA, Stone B, et al. Standard treatments induce antigen‐specific immune responses in prostate cancer. Clin Cancer Res. 2007; 13: 1493 – 1502.
dc.identifier.citedreferenceAragon‐Ching JB, Williams KM, Gulley JL. Impact of androgen‐deprivation therapy on the immune system: implications for combination therapy of prostate cancer. Front Biosci. 2007; 12: 4957 – 4971.
dc.identifier.citedreferenceMercader M, Bodner BK, Moser MT, et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc Natl Acad Sci USA. 2001; 98: 14565 – 14570.
dc.identifier.citedreferenceWada S, Yoshimura K, Hipkiss EL, et al. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model. Cancer Res. 2009; 69: 4309 – 4318.
dc.identifier.citedreferenceShalapour S, Font‐Burgada J, Di Caro G, et al. Immunosuppressive plasma cells impede T‐cell‐dependent immunogenic chemotherapy. Nature. 2015; 521: 94 – 98.
dc.identifier.citedreferenceWu JD, Lin DW, Page ST, Lundgren AD, True LD, Plymate SR. Oxidative DNA damage in the prostate may predispose men to a higher risk of prostate cancer. Transl Oncol. 2009; 2: 39 – 45.
dc.identifier.citedreferenceLiu G, Lu S, Wang X, et al. Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Invest. 2013; 123: 4410 – 4422.
dc.identifier.citedreferenceWu JD, Higgins LM, Steinle A, Cosman D, Haugk K, Plymate SR. Prevalent expression of the immunostimulatory MHC class I chain‐related molecule is counteracted by shedding in prostate cancer. J Clin Invest. 2004; 114: 560 – 568.
dc.identifier.citedreferenceXiao G, Wang X, Sheng J, Lu S, Yu X, Wu JD. Soluble NKG2D ligand promotes MDSC expansion and skews macrophage to the alternatively activated phenotype. J Hematol Oncol. 2015; 8: 13.
dc.identifier.citedreferenceLu S, Zhang J, Liu D, et al. Nonblocking monoclonal antibody targeting soluble MIC revamps endogenous innate and adaptive antitumor responses and eliminates primary and metastatic tumors. Clin Cancer Res. 2015; 21: 4819 – 4830.
dc.identifier.citedreferenceZhang J, Liu D, Li G, et al. Antibody‐mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. Sci Adv. 2017; 3: e1602133.
dc.identifier.citedreferencePienta KJ, Walia G, Simons JW, Soule HR. Beyond the androgen receptor: new approaches to treating metastatic prostate cancer. Report of the 2013 Prouts Neck Prostate Cancer Meeting. Prostate. 2014; 74: 314 – 320.
dc.identifier.citedreferenceMiyahira AK, Kissick HT, Bishop JL, et al. Beyond immune checkpoint blockade: new approaches to targeting host‐tumor interactions in prostate cancer: report from the 2014 Coffey‐Holden prostate cancer academy meeting. Prostate. 2015; 75: 337 – 347.
dc.identifier.citedreferenceMiyahira AK, Lang JM, Den RB, et al. Multidisciplinary intervention of early, lethal metastatic prostate cancer: report from the 2015 Coffey‐Holden Prostate Cancer Academy Meeting. Prostate. 2016; 76: 125 – 139.
dc.identifier.citedreferenceMiyahira AK, Roychowdhury S, Goswami S, et al. Beyond seed and soil: understanding and targeting metastatic prostate cancer; report From the 2016 Coffey‐Holden Prostate Cancer Academy Meeting. Prostate. 2017; 77: 123 – 144.
dc.identifier.citedreferenceKeller ET, Rowley DR, Tomlins SA, et al. Eleventh prouts neck meeting on prostate cancer: emerging strategies in prostate cancer therapy. Cancer Res. 2007; 67: 9613 – 9615.
dc.identifier.citedreferenceRobinson D, Van Allen EM, Wu YM, et al. Integrative clinical genomics of advanced prostate cancer. Cell. 2015; 161: 1215 – 1228.
dc.identifier.citedreferenceMateo J, Carreira S, Sandhu S, et al. DNA‐repair defects and olaparib in metastatic prostate cancer. N Engl J Med. 2015; 373: 1697 – 1708.
dc.identifier.citedreferenceCheng HH, Pritchard CC, Boyd T, Nelson PS, Montgomery B. Biallelic Inactivation of BRCA2 in Platinum‐sensitive metastatic castration‐resistant prostate cancer. Eur Urol. 2016; 69: 992 – 995.
dc.identifier.citedreferenceSakai W, Swisher EM, Karlan BY, et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2‐mutated cancers. Nature. 2008; 451: 1116 – 1120.
dc.identifier.citedreferenceSwisher EM, Sakai W, Karlan BY, Wurz K, Urban N, Taniguchi T. Secondary BRCA1 mutations in BRCA1‐mutated ovarian carcinomas with platinum resistance. Cancer Res. 2008; 68: 2581 – 2586.
dc.identifier.citedreferenceNorquist B, Wurz KA, Pennil CC, et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J Clin Oncol. 2011; 29: 3008 – 3015.
dc.identifier.citedreferenceBarber LJ, Sandhu S, Chen L, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2013; 229: 422 – 429.
dc.identifier.citedreferenceQuigley D, Alumkal JJ, Wyatt AW, et al. Analysis of circulating cell‐free DNA identifies multi‐clonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors. Cancer Discov. 2017; 7: 999 – 1005.
dc.identifier.citedreferenceGoodall J, Mateo J, Yuan W, et al. Circulating free DNA to guide prostate cancer treatment with PARP inhibition. Cancer Discov. 2017; 7: 1006 – 1017.
dc.identifier.citedreferenceCancer Genome Atlas Research, N. The molecular taxonomy of primary prostate cancer. Cell. 2015; 163: 1011 – 1025.
dc.identifier.citedreferencePritchard CC, Mateo J, Walsh MF, et al. Inherited DNA‐Repair gene mutations in men with metastatic prostate cancer. N Engl J Med. 2016; 375: 443 – 453.
dc.identifier.citedreferenceHeinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr Rev. 2004; 25: 276 – 308.
dc.identifier.citedreferenceTran C, Ouk S, Clegg NJ, et al. Development of a second‐generation antiandrogen for treatment of advanced prostate cancer. Science. 2009; 324: 787 – 790.
dc.identifier.citedreferencede Bono JS, Logothetis CJ, Molina A, et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med. 2011; 364: 1995 – 2005.
dc.identifier.citedreferenceWatson PA, Arora VK, Sawyers CL. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer. 2015; 15: 701 – 711.
dc.identifier.citedreferencePomerantz MM, Li F, Takeda DY, et al. The androgen receptor cistrome is extensively reprogrammed in human prostate tumorigenesis. Nat Genet. 2015; 47: 1346 – 1351.
dc.identifier.citedreferenceChen Y, Chi P, Rockowitz S, et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med. 2013; 19: 1023 – 1029.
dc.identifier.citedreferenceArora VK, Schenkein E, Murali R, et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell. 2013; 155: 1309 – 1322.
dc.identifier.citedreferenceIsikbay M, Otto K, Kregel S, et al. Glucocorticoid receptor activity contributes to resistance to androgen‐targeted therapy in prostate cancer. Horm Cancer. 2014; 5: 72 – 89.
dc.identifier.citedreferenceMoran TJ, Gray S, Mikosz CA, Conzen SD. The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells. Cancer Res. 2000; 60: 867 – 872.
dc.identifier.citedreferencePan D, Kocherginsky M, Conzen SD. Activation of the glucocorticoid receptor is associated with poor prognosis in estrogen receptor‐negative breast cancer. Cancer Res. 2011; 71: 6360 – 6370.
dc.identifier.citedreferenceAsangani IA, Wilder‐Romans K, Dommeti VL, et al. BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol Cancer Res. 2016; 14: 324 – 331.
dc.identifier.citedreferenceKach J, Long TM, Selman P, et al. Selective glucocorticoid receptor modulators (SGRMs) delay castrate‐resistant prostate cancer growth. Mol Cancer Ther. 2017; 16: 1680 – 1692.
dc.identifier.citedreferenceLi J, Alyamani M, Zhang A, et al. Aberrant corticosteroid metabolism in tumor cells enables GR takeover in enzalutamide resistant prostate cancer. Elife. 2017; 6: e20183.
dc.identifier.citedreferenceYegnasubramanian S. Prostate cancer epigenetics and its clinical implications. Asian J Androl. 2016; 18: 549 – 558.
dc.identifier.citedreferenceAbida W, Armenia J, Gopalan A, et al. Prospective genomic profiling of prostate cancer across disease states reveals germline and somatic alterations that may affect clinical decision making. JCO Precision Oncol. 2017; 2017. https://doi.org/10.1200/PO.17.00029
dc.identifier.citedreferenceBeltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration‐resistant neuroendocrine prostate cancer. Nat Med. 2016; 22: 298 – 305.
dc.identifier.citedreferenceTan HL, Sood A, Rahimi HA, et al. Rb loss is characteristic of prostatic small cell neuroendocrine carcinoma. Clin Cancer Res. 2014; 20: 890 – 903.
dc.identifier.citedreferenceAparicio AM, Shen L, Tapia EL, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res. 2016; 22: 1520 – 1530.
dc.identifier.citedreferenceGingrich JR, Greenberg NM. A transgenic mouse prostate cancer model. Toxicol Pathol. 1996; 24: 502 – 504.
dc.identifier.citedreferenceZhou Z, Flesken‐Nikitin A, Corney DC, et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res. 2006; 66: 7889 – 7898.
dc.identifier.citedreferenceKu SY, Rosario S, Wang Y, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017; 355: 78 – 83.
dc.identifier.citedreferenceZou M, Toivanen R, Mitrofanova A, et al. Transdifferentiation as a mechanism of treatment resistance in a mouse model of castration‐resistant prostate cancer. Cancer Discov. 2017; 7: 736 – 749.
dc.identifier.citedreferenceMu P, Zhang Z, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53‐ and RB1‐deficient prostate cancer. Science. 2017; 355: 84 – 88.
dc.identifier.citedreferenceBeltran H, Rickman DS, Park K, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011; 1: 487 – 495.
dc.identifier.citedreferenceBishop JL, Thaper D, Vahid S, et al. The master neural transcription factor BRN2 is an androgen receptor‐suppressed driver of neuroendocrine differentiation in prostate cancer. Cancer Discov. 2017; 7: 54 – 71.
dc.identifier.citedreferenceDardenne E, Beltran H, Benelli M, et al. Induces an EZH2‐Mediated transcriptional program driving neuroendocrine prostate cancer. Cancer Cell. 2016; 30: 563 – 577.
dc.identifier.citedreferenceLee JK, Phillips JW, Smith BA, et al. N‐Myc drives neuroendocrine prostate cancer initiated from human prostate epithelial cells. Cancer Cell. 2016; 29: 536 – 547.
dc.identifier.citedreferenceLin J, Patel SA, Sama AR, et al. A phase I/II study of the investigational drug alisertib in combination with abiraterone and prednisone for patients with metastatic castration‐resistant prostate cancer progressing on abiraterone. Oncologist. 2016; 21: 1296 – 1297e.
dc.identifier.citedreferenceIshak CA, Marshall AE, Passos DT, et al. An RB‐EZH2 complex mediates silencing of repetitive DNA sequences. Mol Cell. 2016; 64: 1074 – 1087.
dc.identifier.citedreferenceJadvar H. PET of glucose metabolism and cellular proliferation in prostate cancer. J Nucl Med. 2016; 57: 25S – 29S.
dc.identifier.citedreferenceMohler JL, Armstrong AJ, Bahnson RR, et al. Prostate cancer, version 1.2016. J Natl Compr Canc Netw. 2016; 14: 19 – 30.
dc.identifier.citedreferenceMitchell CR, Lowe VJ, Rangel LJ, Hung JC, Kwon ED, Karnes RJ. Operational characteristics of (11)c‐choline positron emission tomography/computerized tomography for prostate cancer with biochemical recurrence after initial treatment. J Urol. 2013; 189: 1308 – 1313.
dc.identifier.citedreferenceParker WP, Evans JD, Stish BJ, et al. Patterns of recurrence after postprostatectomy fossa radiation therapy identified by C‐11 choline positron emission Tomography/Computed tomography. Int J Radiat Oncol Biol Phys. 2017; 97: 526 – 535.
dc.identifier.citedreferenceZattoni F, Nehra A, Murphy CR, et al. Mid‐term outcomes following salvage lymph node dissection for prostate cancer nodal recurrence status Post–radical prostatectomy. Eur Urol Focus. 2: 522 – 531.
dc.identifier.citedreferenceDecaestecker K, De Meerleer G, Ameye F, et al. Surveillance or metastasis‐directed therapy for Oligometastatic prostate cancer recurrence (STOMP): study protocol for a randomized phase II trial. BMC Cancer. 2014; 14: 671.
dc.identifier.citedreferenceRoss JS, Sheehan CE, Fisher HA, et al. Correlation of primary tumor prostate‐specific membrane antigen expression with disease recurrence in prostate cancer. Clin Cancer Res. 2003; 9: 6357 – 6362.
dc.identifier.citedreferenceBarinka C, Rojas C, Slusher B, Pomper M. Glutamate carboxypeptidase II in diagnosis and treatment of neurologic disorders and prostate cancer. Curr Med Chem. 2012; 19: 856 – 870.
dc.identifier.citedreferenceAfshar‐Oromieh A, Zechmann CM, Malcher A, et al. Comparison of PET imaging with a (68)Ga‐labelled PSMA ligand and (18)F‐choline‐based PET/CT for the diagnosis of recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2014; 41: 11 – 20.
dc.identifier.citedreferenceHenkenberens C, von Klot CA, Ross TL, et al. (68)Ga‐PSMA ligand PET/CT‐based radiotherapy in locally recurrent and recurrent oligometastatic prostate cancer: Early efficacy after primary therapy. Strahlenther Onkol. 2016; 192: 431 – 439.
dc.identifier.citedreferencevan Leeuwen PJ, Stricker P, Hruby G, et al. (68) Ga‐PSMA has a high detection rate of prostate cancer recurrence outside the prostatic fossa in patients being considered for salvage radiation treatment. BJU Int. 2016; 117: 732 – 739.
dc.identifier.citedreferenceBluemel C, Linke F, Herrmann K, et al. Impact of 68Ga‐PSMA PET/CT on salvage radiotherapy planning in patients with prostate cancer and persisting PSA values or biochemical relapse after prostatectomy. EJNMMI Res. 2016; 6: 78.
dc.identifier.citedreferenceEiber M, Weirich G, Holzapfel K, et al. Simultaneous 68Ga‐PSMA HBED‐CC PET/MRI improves the localization of primary prostate cancer. Eur Urol. 2016; 70: 829 – 836.
dc.identifier.citedreferencePorter AT, McEwan AJ, Powe JE, et al. Results of a randomized phase‐III trial to evaluate the efficacy of strontium‐89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer. Int J Radiat Oncol Biol Phys. 1993; 25: 805 – 813.
dc.identifier.citedreferenceSartor O, Reid RH, Hoskin PJ, et al. Samarium‐153‐Lexidronam complex for treatment of painful bone metastases in hormone‐refractory prostate cancer. Urology. 2004; 63: 940 – 945.
dc.identifier.citedreferenceParker C, Nilsson S, Heinrich D, et al. Alpha emitter radium‐223 and survival in metastatic prostate cancer. N Engl J Med. 2013; 369: 213 – 223.
dc.identifier.citedreferenceKratochwil C, Giesel FL, Stefanova M, et al. PSMA‐Targeted radionuclide therapy of metastatic castration‐Resistant prostate cancer with 177Lu‐Labeled PSMA‐617. J Nucl Med. 2016; 57: 1170 – 1176.
dc.identifier.citedreferenceFendler WP, Reinhardt S, Ilhan H, et al. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu‐PSMA‐617 therapy for metastatic castration‐resistant prostate cancer. Oncotarget. 2017; 8: 3581 – 3590.
dc.identifier.citedreferenceKratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac‐PSMA‐617 for PSMA‐targeted alpha‐radiation therapy of metastatic castration‐Resistant prostate cancer. J Nucl Med. 2016; 57: 1941 – 1944.
dc.identifier.citedreferenceSchweizer MT, Cheng HH, Tretiakova MS, et al. Mismatch repair deficiency may be common in ductal adenocarcinoma of the prostate. Oncotarget. 2016; 7: 82504 – 82510.
dc.identifier.citedreferenceMiyahira AK, Soule HR. The 23rd annual prostate cancer foundation scientific retreat report. Prostate. 2017; 77: 1093 – 1106.
dc.identifier.citedreferenceLe DT, Durham JN, Smith KN, et al. Mismatch‐repair deficiency predicts response of solid tumors to PD‐1 blockade. Science. 2017; 357: 409 – 413.
dc.identifier.citedreferenceMlecnik B, Bindea G, Angell HK, et al. Integrative analyses of colorectal cancer show immunoscore is a stronger predictor of patient survival than microsatellite instability. Immunity. 2016; 44: 698 – 711.
dc.identifier.citedreferenceGraff JN, Alumkal JJ, Drake CG, et al. Early evidence of anti‐PD‐1 activity in enzalutamide‐resistant prostate cancer. Oncotarget. 2016; 7: 52810 – 52817.
dc.identifier.citedreferenceKarzai F, Madan RA, Owens H, et al. Combination of PDL‐1 and PARP inhibition in an unselected population with metastatic castrate‐resistant prostate cancer (mCRPC). J Clin Oncol. 2017; 35: 5026 – 5026.
dc.identifier.citedreferenceGao J, Ward JF, Pettaway CA, et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med. 2017; 23: 551 – 555.
dc.identifier.citedreferenceRedmond WL, Linch SN, Kasiewicz MJ. Combined targeting of costimulatory (OX40) and coinhibitory (CTLA‐4) pathways elicits potent effector T cells capable of driving robust antitumor immunity. Cancer Immunol Res. 2014; 2: 142 – 153.
dc.identifier.citedreferenceLinch SN, Kasiewicz MJ, McNamara MJ, Hilgart‐Martiszus IF, Farhad M, Redmond WL. Combination OX40 agonism/CTLA‐4 blockade with HER2 vaccination reverses T‐cell anergy and promotes survival in tumor‐bearing mice. Proc Natl Acad Sci USA. 2016; 113: E319 – E327.
dc.identifier.citedreferenceTakeshima T, Chamoto K, Wakita D, et al. Local radiation therapy inhibits tumor growth through the generation of tumor‐specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010; 70: 2697 – 2706.
dc.identifier.citedreferenceLee Y, Auh SL, Wang Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: changing strategies for cancer treatment. Blood. 2009; 114: 589 – 595.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.