Show simple item record

SCAI appropriate use criteria for peripheral arterial interventions: An update

dc.contributor.authorKlein, Andrew J.
dc.contributor.authorJaff, Michael R.
dc.contributor.authorGray, Bruce H.
dc.contributor.authorAronow, Herbert D.
dc.contributor.authorBersin, Robert M.
dc.contributor.authorDiaz‐sandoval, Larry J.
dc.contributor.authorDieter, Robert S.
dc.contributor.authorDrachman, Douglas E.
dc.contributor.authorFeldman, Dmitriy N.
dc.contributor.authorGigliotti, Osvaldo S.
dc.contributor.authorGupta, Kamal
dc.contributor.authorParikh, Sahil A.
dc.contributor.authorPinto, Duane S.
dc.contributor.authorShishehbor, Mehdi H.
dc.contributor.authorWhite, Christopher J.
dc.date.accessioned2017-10-23T17:31:32Z
dc.date.available2018-12-03T15:34:05Zen
dc.date.issued2017-10-01
dc.identifier.citationKlein, Andrew J.; Jaff, Michael R.; Gray, Bruce H.; Aronow, Herbert D.; Bersin, Robert M.; Diaz‐sandoval, Larry J. ; Dieter, Robert S.; Drachman, Douglas E.; Feldman, Dmitriy N.; Gigliotti, Osvaldo S.; Gupta, Kamal; Parikh, Sahil A.; Pinto, Duane S.; Shishehbor, Mehdi H.; White, Christopher J. (2017). "SCAI appropriate use criteria for peripheral arterial interventions: An update." Catheterization and Cardiovascular Interventions 90(4): E90-E110.
dc.identifier.issn1522-1946
dc.identifier.issn1522-726X
dc.identifier.urihttps://hdl.handle.net/2027.42/138896
dc.publisherWiley Periodicals, Inc.
dc.titleSCAI appropriate use criteria for peripheral arterial interventions: An update
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138896/1/ccd27141_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138896/2/ccd27141.pdf
dc.identifier.doi10.1002/ccd.27141
dc.identifier.sourceCatheterization and Cardiovascular Interventions
dc.identifier.citedreferenceGray BH, Grant AA, Kalbaugh CA, et al. The impact of isolated tibial disease on outcomes in the critical limb ischemic population. Ann Vasc Surg 2010; 24: 349 â 359.
dc.identifier.citedreferenceAzuma N, Uchida H, Kokubo T, Koya A, Akasaka N, Sasajima T. Factors influencing wound healing of critical ischaemic foot after bypass surgery: Is the angiosome important in selecting bypass target artery? Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2012; 43: 322 â 328.
dc.identifier.citedreferenceAlexandrescu V, Soderstrom M, Venermo M. Angiosome theory: Fact or fiction? Scand J Surg 2012; 101: 125 â 131.
dc.identifier.citedreferenceNeville RF, Attinger CE, Bulan EJ, Ducic I, Thomassen M, Sidawy AN. Revascularization of a specific angiosome for limb salvage: Does the target artery matter? Ann Vasc Surg 2009; 23: 367 â 373.
dc.identifier.citedreferenceIida O, Soga Y, Hirano K, et al. Longâ term results of direct and indirect endovascular revascularization based on the angiosome concept in patients with critical limb ischemia presenting with isolated belowâ theâ knee lesions. J Vasc Surg 2012; 55: 363 â 370.
dc.identifier.citedreferenceAlexandrescu V, Vincent G, Azdad K, et al. A reliable approach to diabetic neuroischemic foot wounds: belowâ theâ knee angiosomeâ oriented angioplasty. J Endovasc Ther Off J Int Soc Endovasc Special; 18: 376 â 387.
dc.identifier.citedreferenceAcin F, Varela C, Lopez de Maturana I, de Haro J, Bleda S, Rodriguezâ Padilla J. Results of infrapopliteal endovascular procedures performed in diabetic patients with critical limb ischemia and tissue loss from the perspective of an angiosomeâ oriented revascularization strategy. Int J Vasc Med 2014; 2014: 270539.
dc.identifier.citedreferenceBarshes NR, Chambers JD, Cohen J, Belkin M. Model to optimize healthcare value in ischemic extremities 1 study C. Costâ effectiveness in the contemporary management of critical limb ischemia with tissue loss. J Vasc Surg 2012; 56: 1015 â 1024.
dc.identifier.citedreferenceMenard MT, Farber A. The BESTâ CLI trial: A multidisciplinary effort to assess whether surgical or endovascular therapy is better for patients with critical limb ischemia. Semin Vasc Surg 2014; 27: 82 â 84.
dc.identifier.citedreferenceMustapha JA, Finton SM, Diazâ Sandoval LJ, Saab FA, Miller LE. Percutaneous transluminal angioplasty in patients with infrapopliteal arterial disease: Systematic review and metaâ analysis. Circ Cardiovasc Intervent 2016; 9: e003468.
dc.identifier.citedreferenceSchulte KL, Pilger E, Schellong S, et al. Primary Selfâ EXPANDing nitinol stenting vs balloon angioplasty with optional bailout stenting for the treatment of infrapopliteal artery disease in patients with severe intermittent claudication or critical limb ischemia (EXPAND Study). J Endovasc Ther Off J Int Soc Endovasc Special 2015; 22: 690 â 697.
dc.identifier.citedreferenceBosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimusâ eluting versus bareâ metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg 2012; 55: 390 â 398.
dc.identifier.citedreferenceScheinert D, Katsanos K, Zeller T, ACHILLES Investigators, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimusâ eluting stent in patients with ischemic peripheral arterial disease: 1â year results from the ACHILLES trial. J Am Coll Cardiol 2012; 60: 2290 â 2295.
dc.identifier.citedreferenceSiablis D, Kitrou P,S, Katsanos K S, Karnabatidis D. Paclitaxelâ coated balloon angioplasty versus dugâ eluting stenting for the treatment of infrapopliteal longâ segment arterial occlusive disease: The IDEAS randomized controlled trial. JACC Cardiovasc Interv 2014; 7: 1048 â 1056.
dc.identifier.citedreferenceRastan A, Tepe G, Krakenberg H, et al. Sirolimusâ eluting stents vs. bareâ metal stents for treatment of focal lesions in infrapopliteal arteries: A doubleâ blind, multiâ centre, randomized clinical trial. Eur Heart J 2011; 32: 2274 â 2281.
dc.identifier.citedreferenceRastan A, Brechtel K, Krankenberg H, et al. Sirolimusâ eluting stents for treatment of infrapopliteal arteries reduce clinical event rate compared to bareâ metal stents: Longâ term results from a randomized trial. J Am Coll Cardiol 2012; 60: 587 â 591.
dc.identifier.citedreferenceSpreen MI, Martens JM, Knippenberg B, et al. Longâ term followâ up of the PADI trial: Percutaneous transluminal angioplasty versus drugâ eluting stents for infrapopliteal lesions in critical limb ischemia. J Am Heart Assoc 2017; 6: e004877.
dc.identifier.citedreferenceAntoniou G, Chalmers N, Kanesalingham K, et al. Metaâ analysis of outcomes of endovascular treatment of infrapopliteal occlusive disease with drugâ eluting stents. J Endovasc Ther Off J Int Soc Endovasc Special 2013; 20: 131 â 144.
dc.identifier.citedreferenceCassese S, Ndrepepa G, Liistro F, et al. Drugâ coated balloons for revascularization of infrapopliteal arteriesa metaâ analysis of randomized trials. JACC Cardiovasc Intervent 2016; 9: 1072 â 1080.
dc.identifier.citedreferenceFusaro M, Cassese S, Ndrepepa G, et al. Drugâ eluting stents for revascularization of infrapopliteal arteries: Updated metaâ analysis of randomized trials. JACC Cardiovasc Intervent 2013; 6: 1284 â 1293.
dc.identifier.citedreferenceYang X, Lu X, Ye K, Li X, Qin J, Jiang M. Systematic review and metaâ analysis of balloon angioplasty versus primary stenting in the infrapopliteal disease. Vasc Endovasc Surg 2014; 48: 18 â 26.
dc.identifier.citedreferenceKatsanos K, Spiliopoulos S, Diamantopoulos A, Karnabatidis D, Sabharwal T, Siablis D. Systematic review of infrapopliteal drugâ eluting stents: A metaâ analysis of randomized controlled trials. Cardiovasc Intervent Radiol 2013; 36: 645 â 658.
dc.identifier.citedreferenceScheinert D, Katsanos K, Zeller T, et al. A prospective randomized multicenter comparison of balloon angioplasty and infrapopliteal stenting with the sirolimusâ eluting stent in patients with ischemic peripheral arterial disease: 1â year results from the ACHILLES trial. J Am Coll Cardiol 2012; 60: 2290 â 2295.
dc.identifier.citedreferenceRastan A, Tepe G, Krankenberg H, et al. Sirolimusâ eluting stents vs. bareâ metal stents for treatment of focal lesions in infrapopliteal arteries: A doubleâ blind, multiâ centre, randomized clinical trial. Eur Heart J 2011; 32: 2274 â 2281.
dc.identifier.citedreferenceZeller T, Baumgartner I, Scheinert D, et al. Drugâ eluting balloon versus standard balloon angioplasty for infrapopliteal arterial revascularization in critical limb ischemia: 12â month results from the IN.PACT DEEP randomized trial. J Am Coll Cardiol 2014; 64:1568â 76
dc.identifier.citedreferenceLeng G, Lee A, Fowkes F, et al. Incidence, natural history and cardiovascular events in symptomatic and asymptomatic peripheral arterial disease in the general population. Int J Epidemiol 1996; 25: 1172 â 1181.
dc.identifier.citedreferenceDormandy J, Mahir M, Ascady G, et al. Fate of the patient with chronic leg ischaemia. A review article. J Cardiovasc Surg 1989; 30: 50 â 57.
dc.identifier.citedreferenceJelnes R, Gaardsting O, Hougaard Jensen K, Baekgaard N, Tonnesen KH, Schroeder T. Fate in intermittent claudication: Outcome and risk factors. Br Med J 1986; 293: 1137 â 1140.
dc.identifier.citedreferenceParikh SA, Shishehbor MH, Gray BH, White CJ, Jaff MR. SCAI expert consensus statement for renal artery stenting appropriate use. Catheter Cardiovasc Intervent 2014; 84: 1163 â 1171.
dc.identifier.citedreferenceKlein A, Feldman D, Aronow H, et al. Peripheral vascular disease committee for the society for cardiovascular angiography and interventions. SCAI expert consensus statement for aortoâ iliac arterial intervention appropriate use. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2014; 84: 520 â 528.
dc.identifier.citedreferenceKlein AJ, Pinto DS, Gray BH, Jaff MR, White CJ, Drachman DE. SCAI expert consensus statement for femoralâ popliteal arterial intervention appropriate use. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2014; 84: 529 â 538.
dc.identifier.citedreferenceGray BH, Diazâ Sandoval LJ, Dieter RS, Jaff MR, White CJ. SCAI expert consensus statement for infrapopliteal arterial intervention appropriate use. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2014; 84: 539 â 545.
dc.identifier.citedreferenceMurphy MK, Black NA, Lamping DL, et al. Consensus development methods, and their use in clinical guideline development. Health Technol Assess 1998; 2: 1 â 88.
dc.identifier.citedreferenceHendel RC, Patel MR, Allen JM, et al. Appropriate use of cardiovascular technology: 2013 ACCF appropriate use criteria methodology update: A report of the American College of Cardiology Foundation appropriate use criteria task force. J Am Coll Cardiol 2013; 61: 1305 â 1317.
dc.identifier.citedreferenceGarovic VD, Textor SC. Renovascular hypertension and ischemic nephropathy. Circulation 2005; 112: 1362 â 1374.
dc.identifier.citedreferenceWhite CJ, Olin JW. Diagnosis and management of atherosclerotic renal artery stenosis: Improving patient selection and outcomes. Nat Clin Practice Cardiovasc Med 2009; 6: 176 â 190.
dc.identifier.citedreferenceHirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): executive summary a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease) endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Interâ Society Consensus; and Vascular Disease Foundation. J Am Coll Cardiol 2006; 47: 1239 â 1312.
dc.identifier.citedreferenceWeinberg I, Keyes MJ, Giri J, et al. Blood pressure response to renal artery stenting in 901 patients from five prospective multicenter FDAâ approved trials. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2014; 83: 603 â 609.
dc.identifier.citedreferenceHarden P, MacLeod M, Rodger R, et al. Effect of renal artery stenting on progression of renovascular renal failure. Lancet 1997; 349: 1133 â 1136.
dc.identifier.citedreferenceWatson P, Hadjipetrou P, Cox S, Piemonte T, Eisenhauer A. Effect of renal artery stenting on renal function and size in patients with atherosclerotic renovascular disease. Circulation 2000; 102: 1671 â 1677.
dc.identifier.citedreferenceCooper CJ, Murphy TP, Cutlip DE, et al. Stenting and medical therapy for atherosclerotic renalâ artery stenosis. N Engl J Med 2014; 370: 13 â 22.
dc.identifier.citedreferenceWhite CJ. The â chicken littleâ of renal stent trials: The CORAL trial in perspective. JACC Cardiovasc Intervent 2014; 7: 111 â 113.
dc.identifier.citedreferenceInvestigators A, Wheatley K, Ives N, et al. Revascularization versus medical therapy for renalâ artery stenosis. N Engl J Med 2009; 361: 1953 â 1962.
dc.identifier.citedreferenceBax L, Woittiez AJ, Kouwenberg HJ, et al. Stent placement in patients with atherosclerotic renal artery stenosis and impaired renal function. A randomized trial. Ann Intern Med 2009; 150: 840 â 848.
dc.identifier.citedreferenceMangiacapra F, Trana C, Sarno G, et al. Translesional pressure gradients to predict blood pressure response after renal artery stenting in patients with renovascular hypertension. Circ Cardiovasc Intervent 2010; 3: 537 â 542.
dc.identifier.citedreferenceMitchell JA, Subramanian R, White CJ, et al. Predicting blood pressure improvement in hypertensive patients after renal artery stent placement: Renal fractional flow reserve. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2007; 69: 685 â 689.
dc.identifier.citedreferenceDe Bruyne B, Manoharan G, Pijls NH, et al. Assessment of renal artery stenosis severity by pressure gradient measurements. J Am Coll Cardiol 2006; 48: 1851 â 1855.
dc.identifier.citedreferenceLeesar MA, Varma J, Shapira A, et al. Prediction of hypertension improvement after stenting of renal artery stenosis: Comparative accuracy of translesional pressure gradients, intravascular ultrasound, and angiography. J Am Coll Cardiol 2009; 53: 2363 â 2371.
dc.identifier.citedreferenceDieter RS. The functional assessment of renal artery stenosis. Expert Rev Cardiovasc Ther 2005; 3: 369 â 370.
dc.identifier.citedreferenceCaielli P, Frigo AC, Pengo MF, et al. Treatment of atherosclerotic renovascular hypertension: Review of observational studies and a metaâ analysis of randomized clinical trials. Nephrol Dialysis Transplant Off Publ Eur Dialysis Transpl Assoc Eur Renal Assoc 2015; 30: 541 â 553.
dc.identifier.citedreferenceBavry AA, Kapadia SR, Bhatt DL, Kumbhani DJ. Renal artery revascularization: Updated metaâ analysis with the CORAL trial. JAMA Intern Med 2014; 174: 1849 â 1851.
dc.identifier.citedreferenceDuda S, Banz K, Breheme U, et al. Costâ effectiveness analysis of treatment of renalâ artery stenoses by medication, angioplasty, stenting and surgery. Minim Invasive Ther Allied Technol 2001; 10: 55 â 65.
dc.identifier.citedreferenceMurphy T, Cutlip D, Regensteiner J, et al. Supervised exercise, stent revascularization, or medical therapy for claudication due to aortoiliac peripheral artery disease. The CLEVER study. J Am Coll Cardiol 2015; 65: 999 â 1009.
dc.identifier.citedreferenceReynolds MR, Apruzzese P, Galper BZ, et al. Costâ effectiveness of supervised exercise, stenting, and optimal medical care for claudication: Results from the claudication: Exercise versus endoluminal revascularization (CLEVER) trial. J Am Heart Assoc 2014; 3: e001233.
dc.identifier.citedreferenceFakhry F, Spronk S, van der Laan L, et al. Endovascular revascularization and supervised exercise for peripheral artery disease and intermittent claudication: A randomized clinical trial. JAMA J Am Med Assoc 2015; 314: 1936 â 1944.
dc.identifier.citedreferenceGerhardâ Herman MD, Gornik HL, Barrett C, et al. 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol 2016; 69: 1465 â 1508.
dc.identifier.citedreferenceRuggiero NJ II, Jaff MR. The current management of aortic, common iliac, and external iliac artery disease: Basic data underlying clinical decision making. Ann Vasc Surg 2011; 25: 990 â 1003.
dc.identifier.citedreferenceIchihashi S, Higashiura W, Itoh H, Sakaguchi S, Kichikawa K. Iliac artery stent placement relieves claudication in patients with iliac and superficial femoral artery lesions. Cardiovasc Intervent Radiol 2013; 36: 623 â 628.
dc.identifier.citedreferenceSoga Y, Iida O, Kawasaki D, et al. Contemporary outcomes after endovascular treatment for aortoâ iliac artery disease. Circ J 2012; 76: 2697 â 2704.
dc.identifier.citedreferenceIndes JE, Pfaff MJ, Farrokhyar F, et al. Clinical outcomes of 5358 patients undergoing direct open bypass or endovascular treatment for aortoiliac occlusive disease: A systematic review and metaâ analysis. J Endovasc Ther Off J Int Soc Endovasc Specialists 2013; 20: 443 â 455.
dc.identifier.citedreferenceNorgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FGR. Interâ society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 2007; 45: S1 â S68.
dc.identifier.citedreferenceJaff MR, White CJ, Hiatt WR, et al. An update on methods for revascularization and expansion of the TASC lesion classification to include belowâ theâ knee arteries: A supplement to the interâ society consensus for the management of peripheral arterial disease (TASC II): The TASC steering committee. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2015; 86: 611 â 625.
dc.identifier.citedreferenceSuzuki K, Mizutani Y, Soga Y, et al. Efficacy and safety of endovascular therapy for aortoiliac TASC D lesions. Angiology 2017; 68: 67 â 73.
dc.identifier.citedreferenceGoode SD, Cleveland TJ, Gaines PA, Collaborators ST. Randomized clinical trial of stents versus angioplasty for the treatment of iliac artery occlusions (STAG trial). Br J Surg 2013; 100: 1148 â 1153.
dc.identifier.citedreferencede Donato G, Bosiers M, Setacci F, et al. 24â month data from the BRAVISSIMO: A largeâ scale prospective registry on iliac stenting for TASC A & B and TASC C & D lesions. Ann Vasc Surg 2015; 29: 738 â 750.
dc.identifier.citedreferenceGalaria II, Davies MG. Percutaneous transluminal revascularization for iliac occlusive disease: Longâ term outcomes in TransAtlantic Interâ Society Consensus A and B lesions. Ann Vasc Surg 2005; 19: 352 â 360.
dc.identifier.citedreferenceBechterâ Hugl B, Falkensammer J, Gorny O, Greiner A, Chemelli A, Fraedrich G. The influence of gender on patency rates after iliac artery stenting. J Vasc Surg 2014; 59: 1588 â 1596.
dc.identifier.citedreferenceRogers JH, Goldstein I, Kandzari DE, et al. Zotarolimusâ eluting peripheral stents for the treatment of erectile dysfunction in subjects with suboptimal response to phosphodiesteraseâ 5 inhibitors. J Am Coll Cardiol 2012; 60: 2618 â 2627.
dc.identifier.citedreferenceClair DG, Adams J, Reen B, et al. The EPIC nitinol stent system in the treatment of iliac artery lesions: Oneâ year results from the ORION clinical trial. J Endovasc Ther Off J Int Soc Endovasc Special 2014; 21: 213 â 222.
dc.identifier.citedreferencePonec D, Jaff MR, Swischuk J, et al. The Nitinol SMART stent vs Wallstent for suboptimal iliac artery angioplasty: CRISPâ US trial results. J Vasc Intervent Radiol JVIR 2004; 15: 911 â 918.
dc.identifier.citedreferenceJaff MR, Katzen BT. Twoâ year clinical evaluation of the zilver vascular stent for symptomatic iliac artery disease. J Vasc Intervent Radiol 2010; 21: 1489 â 1494.
dc.identifier.citedreferenceBurket MW, Brodmann M, Metzger C, Tan K, Jaff MR. Twelveâ month results of the nitinol astron stent in iliac artery lesions. J Vasc Intervent Radiol 2016; 27: 1650 â 1656.
dc.identifier.citedreferenceReekers JA, Vorwerk D, Rousseau H, et al. Results of a European multicentre iliac stent trial with a flexible balloon expandable stent. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2002; 24: 511 â 515.
dc.identifier.citedreferenceKrankenberg H, Zeller T, Ingwersen M, et al. Selfâ expanding versus balloonâ expandable stents for iliac artery occlusive disease: The randomized ICE trial (iliac artery stents for common or external iliac artery occlusive disease). JACC Cardiovasc Intervent (in press).
dc.identifier.citedreferenceStahlhoff S, Donas KP, Torsello G, Osada N, Herten M. Drugâ eluting vs standard balloon angioplasty for iliac stent restenosis. J Endovasc Ther 2015; 22: 314 â 318.
dc.identifier.citedreferenceMwipatayi BP, Thomas S, Wong J, et al. A comparison of covered vs bare expandable stents for the treatment of aortoiliac occlusive disease. J Vasc Surg 2011; 54: 1561 â 1570.
dc.identifier.citedreferenceMwipatayi BP, Sharma S, Daneshmand A, et al. Durability of the balloonâ expandable covered versus bareâ metal stents in the covered versus balloon expandable stent trial (COBEST) for the treatment of aortoiliac occlusive disease. J Vasc Surg 2016; 64: 83 â 94 e1.
dc.identifier.citedreferenceHajibandeh S, Hajibandeh S, Antoniou SA, Torella F, Antoniou GA. Covered vs uncovered stents for aortoiliac and femoropopliteal arterial disease. J Endovasc Ther 2016; 23: 442 â 452.
dc.identifier.citedreferencePosham R, Biederman DM, Patel RS, et al. Transradial approach for noncoronary interventions: A singleâ center review of safety and feasibility in the first 1,500 cases. J Vasc Intervent Radiol JVIR 2016; 27: 159 â 166.
dc.identifier.citedreferenceBiederman DM, Marinelli B, O’Connor PJ, et al. Transradial access for visceral endovascular interventions in morbidly obese patients: Safety and feasibility. J Vasc Access 2016; 17: 256 â 260.
dc.identifier.citedreferencePatel A, Naides AI, Patel R, Fischman A. Transradial intervention: Basics. J Vasc Intervent Radiol JVIR 2015; 26: 722.
dc.identifier.citedreferenceTetteroo E, van Engelen AD, Spithoven JH, Tielbeek AV, van der Graaf Y, Mali WP. Stent placement after iliac angioplasty: Comparison of hemodynamic and angiographic criteria. Dutch Iliac Stent Trial Study Group. Radiology 1996; 201: 155 â 159.
dc.identifier.citedreferenceGreenhalgh RM, Belch JJ, Brown LC, et al. The adjuvant benefit of angioplasty in patients with mild to moderate intermittent claudication (MIMIC) managed by supervised exercise, smoking cessation advice and best medical therapy: Results from two randomised trials for stenotic femoropopliteal and aortoiliac arterial disease. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2008; 36: 680 â 688.
dc.identifier.citedreferenceFakhry F, Hunink MG. Randomized Comparison of Endovascular Revascularization Plus Supervised Exercise Therapy Versus Supervised Exercise Therapy Only in Patients With Peripheral Artery Disease and Intermittent Claudication: Results of the Endovascular Revascularization and Supervised Exercise (ERASE) Trial. In: Circulation. Philadelphia, PA: Lippincott Williams & Wilkins; 2013. pp 2709 â 2710.
dc.identifier.citedreferenceNordanstig J, Taft C, Hensater M, Perlander A, Osterberg K, Jivegard L. Improved quality of life after 1 year with an invasive versus a noninvasive treatment strategy in claudicants: Oneâ year results of the invasive revascularization or not in intermittent claudication (IRONIC) trial. Circulation 2014; 130: 939 â 947.
dc.identifier.citedreferenceVemulapalli S, Dolor RJ, Hasselblad V, et al. Comparative effectiveness of medical therapy, supervised exercise, and revascularization for patients with intermittent claudication: A network metaâ analysis. Clin Cardiol 2015; 38: 378 â 386.
dc.identifier.citedreferenceMalgor RD, Alahdab F, Elraiyah TA, et al. A systematic review of treatment of intermittent claudication in the lower extremities. J Vasc Surg 2015; 61: 54S â 73S.
dc.identifier.citedreferenceJones WS, Schmit KM, Vemulapalli S, et al. Treatment Strategies for Patients With Peripheral Artery Disease. Comparative Effectiveness Review No. 118. (Prepared by the Duke Evidenceâ based Practice Center under Contract No. 290â 2007â 10066â I.) AHRQ Publication No. 13â EHC090â EF. Rockville, MD: Agency for Healthcare Research and Quality; 2013.
dc.identifier.citedreferencePandey A, Banerjee S, Ngo C, et al. Comparative efficacy of endovascular revascularization versus supervised exercise training in patients with intermittent claudication: Metaâ analysis of randomized controlled trials. JACC Cardiovasc Intervent 2017; 10: 712 â 724.
dc.identifier.citedreferenceKlein AJ, Chen SJ, Messenger JC, et al. Quantitative assessment of the conformational change in the femoropopliteal artery with leg movement. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2009; 74: 787 â 798.
dc.identifier.citedreferenceNorgren L, Hiatt W, Dormandy J, et al. Interâ society consensus for the management of peripheral arterial disease (TASC II). Eur J Endovasc Surg 2007; 33: S1 â 75.
dc.identifier.citedreferenceNguyen Bâ N, Amdur RL, Abugideiri M, Rahbar R, Neville RF, Sidawy AN. Postoperative complications after common femoral endarterectomy. J Vasc Surg 2015; 61: 1489 â 1494.
dc.identifier.citedreferenceAzema L, Davaine JM, Guyomarch B, et al. Endovascular repair of common femoral artery and concomitant arterial lesions. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2011; 41: 787 â 793.
dc.identifier.citedreferenceGoueffic Y, Schiava ND, Thaveau F, et al. Stenting or surgery for de novo common femoral artery stenosis JACC cardiovascular interventions (in press).
dc.identifier.citedreferenceKatsanos K, Geisler BP, Garner AM, Zayed H, Cleveland T, Pietzsch JB. Economic analysis of endovascular drugâ eluting treatments for femoropopliteal artery disease in the UK. BMJ Open 2016; 6: e011245.
dc.identifier.citedreferenceSalisbury AC, Li H, Vilain KR, et al. Costâ effectiveness of endovascular femoropopliteal intervention using drugâ coated balloons versus standard percutaneous transluminal angioplasty: Results from the IN.PACT SFA II trial. JACC Cardiovasc Intervent 2016; 9: 2343 â 2352.
dc.identifier.citedreferenceArain SA, White CJ. The price is right (but buyer beware). JACC Cardiovasc Intervent 2016; 9: 2353 â 2355.
dc.identifier.citedreferenceShishehbor MH, Jaff MR. Percutaneous therapies for peripheral artery disease. Circulation 2016; 134: 2008 â 2027.
dc.identifier.citedreferenceTepe G, Laird J, Schneider P, et al. Drugâ coated balloon versus standard percutaneous transluminal angioplasty for the treatment of superficial femoral and popliteal peripheral artery disease: 12â month results from the IN.PACT SFA randomized trial. Circulation 2015; 131: 495 â 502.
dc.identifier.citedreferenceScheinert D, Duda S, Zeller T, et al. The LEVANT I (Lutonix paclitaxelâ coated balloon for the prevention of femoropopliteal restenosis) trial for femoropopliteal revascularization: Firstâ inâ human randomized trial of lowâ dose drugâ coated balloon versus uncoated balloon angioplasty. JACC Cardiovasc Intervent 2014; 7: 10 â 19.
dc.identifier.citedreferenceWerk M, Albrecht T, Meyer DR, et al. Paclitaxelâ coated balloons reduce restenosis after femoroâ popliteal angioplasty: Evidence from the randomized PACIFIER trial. Circ Cardiovasc Intervent 2012; 5: 831 â 840.
dc.identifier.citedreferenceRosenfield K, Jaff MR, White CJ, et al. Trial of a paclitaxelâ coated balloon for femoropopliteal artery disease. N Engl J Med 2015; 373: 145 â 153.
dc.identifier.citedreferenceLaird JR, Schneider PA, Tepe G, et al. Sustained durability of treatment effect using a drugâ coated balloon for femoropopliteal lesions: 24â month results of IN.PACT SFA. J Am Coll Cardiol 2015.
dc.identifier.citedreferenceTepe G, Zeller T, Albrecht T, et al. Local delivery of paclitaxel to inhibit restenosis during angioplasty of the leg. N Engl J Med 2008; 358: 689 â 699.
dc.identifier.citedreferenceTepe G, Schnorr B, Albrecht T, et al. Angioplasty of femoralâ popliteal arteries with drugâ coated balloons: 5â year followâ up of the THUNDER trial. JACC Cardiovasc Intervent 2015; 8: 102 â 108.
dc.identifier.citedreferenceLiistro F, Grotti S, Porto I, et al. Drugâ eluting balloon in peripheral intervention for the superficial femoral artery: The DEBATEâ SFA randomized trial (drug eluting balloon in peripheral intervention for the superficial femoral artery). JACC Cardiovasc Intervent 2013; 6: 1295 â 1302.
dc.identifier.citedreferenceMicari A, Vadala G, Castriota F, et al. 1â year results of paclitaxelâ coated balloons for long femoropopliteal artery disease: Evidence from the SFAâ long study. JACC Cardiovasc Intervent 2016; 9: 950 â 956.
dc.identifier.citedreferenceYokoi H, Ohki T, Kichikawa K, et al. Zilver PTX postâ market surveillance study of paclitaxelâ eluting stents for treating femoropopliteal artery disease in Japan: 12â month results. JACC Cardiovasc Intervent 2016; 8; 271 â 277.
dc.identifier.citedreferenceDake MD, Ansel GM, Jaff MR, et al. Durable clinical effectiveness with paclitaxelâ eluting stents in the femoropopliteal artery: 5â year results of the zilver PTX randomized trial. Circulation 2016; 133: 1472 â 1483; discussion 83
dc.identifier.citedreferenceLammer J, Zeller T, Hausegger KA, et al. Heparinâ bonded covered stents versus bareâ metal stents for complex femoropopliteal artery lesions: The randomized VIASTAR trial (Viabahn endoprosthesis with PROPATEN bioactive surface [VIA] versus bare nitinol stent in the treatment of long lesions in superficial femoral artery occlusive disease). J Am Coll Cardiol 2013; 62: 1320 â 1327.
dc.identifier.citedreferenceGeraghty P, Mewissen M, Jaff M, Ansel G, Investigators V. Threeâ year results of the VIBRANT trial of VIABAHN endoprosthesis versus bare nitinol stent implantation for complex superficial femoral artery occlusive disease. J Vasc Surg 2013; 58: 386 â 395.
dc.identifier.citedreferenceLammer J, Zeller T, Hausegger KA, et al. Sustained benefit at 2 years for covered stents versus bareâ metal stents in long SFA lesions: The VIASTAR trial. Cardiovasc Intervent Radiol 2015; 38: 25 â 32.
dc.identifier.citedreferenceMcKinsey JF, Zeller T, Rochaâ Singh KJ, Jaff MR, Garcia LA, Investigators DL. Lower extremity revascularization using directional atherectomy: 12â month prospective results of the DEFINITIVE LE study. JACC Cardiovasc Intervent 2014; 7: 923 â 933.
dc.identifier.citedreferenceKrishnan P, Tarricone A, Purushothaman KR, et al. An algorithm for the use of embolic protection during atherectomy for femoral popliteal lesions. JACC Cardiovasc Intervent 2017; 10: 403 â 410.
dc.identifier.citedreferenceKrankenberg H, Tubler T, Ingwersen M, et al. Drugâ coated balloon versus standard balloon for superficial femoral artery inâ stent restenosis: The randomized femoral artery inâ stent restenosis (FAIR) trial. Circulation 2015; 132: 2230 â 2236.
dc.identifier.citedreferenceDippel EJ, Makam P, Kovach R, et al. Randomized controlled study of excimer laser atherectomy for treatment of femoropopliteal inâ stent restenosis: Initial results from the EXCITE ISR trial (EXCImer Laser Randomized Controlled Study for Treatment of FemoropopliTEal Inâ Stent Restenosis). JACC Cardiovasc Intervent 2015; 8: 92 â 101.
dc.identifier.citedreferenceGandini R, Del Giudice C, Merolla S, Morosetti D, Pampana E, Simonetti G. Treatment of chronic SFA inâ stent occlusion with combined laser atherectomy and drugâ eluting balloon angioplasty in patients with critical limb ischemia: A singleâ center, prospective, randomized study. J Endovasc Ther Off J Int Soc Endovasc Special 2013; 20: 805 â 814.
dc.identifier.citedreferenceShishehbor MH, White CJ, Gray BH, et al. Critical limb ischemia: An expert statement. J Am Coll Cardiol 2016; 68: 2002 â 2015.
dc.identifier.citedreferenceShishehbor MH, Hammad TA, Zeller T, Baumgartner I, Scheinert D, Rochaâ Singh KJ. An analysis of IN.PACT DEEP randomized trial on the limitations of the societal guidelinesâ recommended hemodynamic parameters to diagnose critical limb ischemia. J Vasc Surg 2016; 63: 1311 â 1317.
dc.identifier.citedreferenceBunte MC, Jacob J, Nudelman B, Shishehbor MH. Validation of the relationship between ankleâ brachial and toeâ brachial indices and infragenicular arterial patency in critical limb ischemia. Vasc Med 2015; 20: 23 â 29.
dc.identifier.citedreferenceGraziani L, Silvestro A, Bertone V, et al. Vascular involvement in diabetic subjects with ischemic foot ulcer: A new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2007; 33: 453 â 460.
dc.identifier.citedreferenceSadek M, Ellozy SH, Turnbull IC, Lookstein RA, Marin ML, Faries PL. Improved outcomes are associated with multilevel endovascular intervention involving the tibial vessels compared with isolated tibial intervention. J Vasc Surg 2009; 49: 638 â 643.
dc.identifier.citedreferenceAdam DJ, Beard JD, Cleveland T, et al. Bypass versus angioplasty in severe ischaemia of the leg (BASIL): Multicentre, randomised controlled trial. Lancet 2005; 366: 1925 â 1934.
dc.identifier.citedreferenceKawarada O, Fujihara M, Higashimori A, Yokoi Y, Honda Y, Fitzgerald PJ. Predictors of adverse clinical outcomes after successful infrapopliteal intervention. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2012; 80: 861 â 871.
dc.identifier.citedreferenceShiraki T, Iida O, Takahara M, et al. Predictors of delayed wound healing after endovascular therapy of isolated infrapopliteal lesions underlying critical limb ischemia in patients with high prevalence of diabetes mellitus and hemodialysis. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 2015; 49: 565 â 573.
dc.identifier.citedreferenceBosiers M, Scheinert D, Peeters P, et al. Randomized comparison of everolimusâ eluting versus bareâ metal stents in patients with critical limb ischemia and infrapopliteal arterial occlusive disease. J Vasc Surg 2012; 55: 390 â 398.
dc.identifier.citedreferenceRochaâ Singh KJ, Jaff M, Joye J, Laird J, Ansel G, Schneider P. Major adverse limb events and wound healing following infrapopliteal artery stent implantation in patients with critical limb ischemia: The XCELL trial. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2012; 80: 1042 â 1051.
dc.identifier.citedreferenceKawarada O, Yokoi Y, Higashimori A, et al. Assessment of macroâ and microcirculation in contemporary critical limb ischemia. Catheter Cardiovasc Intervent Off J Soc Cardiac Angiogr Intervent 2011; 78: 1051 â 1058.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.