Show simple item record

Interplanetary magnetic field properties and variability near Mercury’s orbit

dc.contributor.authorJames, Matthew K.
dc.contributor.authorImber, Suzanne M.
dc.contributor.authorBunce, Emma J.
dc.contributor.authorYeoman, Timothy K.
dc.contributor.authorLockwood, Mike
dc.contributor.authorOwens, Mathew J.
dc.contributor.authorSlavin, James A.
dc.date.accessioned2017-10-23T17:31:49Z
dc.date.available2018-10-02T19:49:01Zen
dc.date.issued2017-08
dc.identifier.citationJames, Matthew K.; Imber, Suzanne M.; Bunce, Emma J.; Yeoman, Timothy K.; Lockwood, Mike; Owens, Mathew J.; Slavin, James A. (2017). "Interplanetary magnetic field properties and variability near Mercury’s orbit." Journal of Geophysical Research: Space Physics 122(8): 7907-7924.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/138915
dc.description.abstractThe first extensive study of interplanetary magnetic field (IMF) characteristics and stability at Mercury is undertaken using MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) magnetometer data. Variations in IMF and solar wind conditions have a direct and rapid effect upon Mercury’s highly dynamic magnetosphere; hence, understanding of the time scales over which these variations occur is crucial because they determine the duration of magnetospheric states. We characterize typical distributions of IMF field strength, clock angle, and cone angle throughout the duration of MESSENGER’s mission. Clock and cone angle distributions collected during the first Earth year of the mission indicate that there was a significant north‐south asymmetry in the location of the heliospheric current sheet during this period. The stability of IMF magnitude, clock angle, cone angle, and IMF Bz polarity is quantified for the entire mission. Changes in IMF Bz polarity and magnitude are found to be less likely for higher initial field magnitudes. Stability in IMF conditions is also found to be higher at aphelion (heliocentric distance r ∼ 0.31 AU) than at perihelion (r ∼ 0.47 AU).Key PointsThe typical characteristics of the IMF at Mercury during the MESSENGER mission have been studiedThe time scales over which variations in the IMF at Mercury occur have been quantifiedIMF clock and cone angle distributions show long‐term variations related to an asymmetric reversal of the solar dipole
dc.publisherCambridge Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMercury
dc.subject.otherIMF
dc.subject.otherMESSENGER
dc.subject.othersolar wind
dc.titleInterplanetary magnetic field properties and variability near Mercury’s orbit
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138915/1/jgra53735_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138915/2/jgra53735-sup-0001-Text_SI-S01.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138915/3/jgra53735.pdf
dc.identifier.doi10.1002/2017JA024435
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The effect of erosion on the solar wind stand‐off distance at Mercury, J. Geophys. Res., 84 ( A5 ), 2076 – 2082, doi: 10.1029/JA084iA05p02076.
dc.identifier.citedreferenceRussell, C. T., D. N. Baker, and J. A. Slavin ( 1988 ), The magnetosphere of Mercury, in Mercury, edited by F. Vilas, C. R. Chapman, and M. S. Matthews, pp. 514 – 561, Univ. of Ariz. Press, Tucson, Ariz.
dc.identifier.citedreferenceSarantos, M., and J. A. Slavin ( 2009 ), On the possible formation of Alfvén wings at Mercury during encounters with coronal mass ejections, Geophys. Res. Lett., 36, L04107, doi: 10.1029/2008GL036747.
dc.identifier.citedreferenceSarantos, M., R. M. Killen, and D. Kim ( 2007 ), Predicting the long‐term solar wind ion‐sputtering source at Mercury, Planet. Space Sci., 55 ( 11 ), 1584 – 1595, doi: 10.1016/j.pss.2006.10.011. Relation between Exosphere‐Magnetosphere‐Surface on Mercury and the Moon European Geosciences Union.
dc.identifier.citedreferenceShue, J.‐H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer ( 1997 ), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102 ( A5 ), 9497 – 9511, doi: 10.1029/97JA00196.
dc.identifier.citedreferenceSiscoe, G., and L. Christopher ( 1975 ), Variations in the solar wind stand‐off distance at Mercury, Geophys. Res. Lett., 2 ( 4 ), 158 – 160, doi: 10.1029/GL002i004p00158.
dc.identifier.citedreferenceSlavin, J. ( 2004 ), Mercury’s magnetosphere, Adv. Space Res., 33 ( 11 ), 1859 – 1874, doi: 10.1016/j.asr.2003.02.019.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009a ), MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, Science, 324 ( 5927 ), 606 – 610, doi: 10.1126/science.1172011.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009b ), MESSENGER observations of Mercury’s magnetosphere during northward IMF, Geophys. Res. Lett., 36, L02101, doi: 10.1029/2008GL036158.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail, Science, 329 ( 5992 ), 665 – 668, doi: 10.1126/science.1188067.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012a ), MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury, J. Geophys. Res., 117, A01215, doi: 10.1029/2011JA016900.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2012b ), MESSENGER observations of a flux‐transfer‐event shower at Mercury, J. Geophys. Res., 117, A00M06, doi: 10.1029/2012JA017926.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 – 8116, doi: 10.1002/2014JA020319.
dc.identifier.citedreferenceSun, X., J. T. Hoeksema, Y. Liu, and J. Zhao ( 2015 ), On polar magnetic field reversal and surface flux transport during solar cycle 24, Astrophys. J., 798 ( 2 ), 114.
dc.identifier.citedreferenceSundberg, T., et al. ( 2013 ), Cyclic reformation of a quasi‐parallel bow shock at Mercury: MESSENGER observations, J. Geophys. Res. Space Physics, 118, 6457 – 6464, doi: 10.1002/jgra.50602.
dc.identifier.citedreferenceTenfjord, P., N. Østgaard, K. Snekvik, K. M. Laundal, J. P. Reistad, S. Haaland, and S. E. Milan ( 2015 ), How the IMF By induces a By component in the closed magnetosphere and how it leads to asymmetric currents and convection patterns in the two hemispheres, J. Geophys. Res. Space Physics, 120, 9368 – 9384, doi: 10.1002/2015JA021579.
dc.identifier.citedreferenceTrávníček, P., P. Hellinger, and D. Schriver ( 2007 ), Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations, Geophys. Res. Lett., 34, L05104, doi: 10.1029/2006GL028518.
dc.identifier.citedreferenceVarela, J., F. Pantellini, and M. Moncuquet ( 2015 ), The effect of interplanetary magnetic field orientation on the solar wind flux impacting Mercury’s surface, Planet. Space Sci., 119, 264 – 269, doi: 10.1016/j.pss.2015.10.004.
dc.identifier.citedreferenceWinslow, R. M., C. L. Johnson, B. J. Anderson, H. Korth, J. A. Slavin, M. E. Purucker, and S. C. Solomon ( 2012 ), Observations of Mercury’s northern cusp region with MESSENGER’s Magnetometer, Geophys. Res. Lett., 39, L08112, doi: 10.1029/2012GL051472.
dc.identifier.citedreferenceWinslow, R. M., B. J. Anderson, C. L. Johnson, J. A. Slavin, H. Korth, M. E. Purucker, D. N. Baker, and S. C. Solomon ( 2013 ), Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations, J. Geophys. Res. Space Physics, 118, 2213 – 2227, doi: 10.1002/jgra.50237.
dc.identifier.citedreferenceWinslow, R. M., N. Lugaz, L. C. Philpott, N. A. Schwadron, C. J. Farrugia, B. J. Anderson, and C. W. Smith ( 2015 ), Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury, J. Geophys. Res. Space Physics, 120, 6101 – 6118, doi: 10.1002/2015JA021200.
dc.identifier.citedreferenceWinslow, R. M., L. Philpott, C. S. Paty, N. Lugaz, N. A. Schwadron, C. L. Johnson, and H. Korth ( 2017 ), Statistical study of ICME effects on Mercury’s magnetospheric boundaries and Northern Cusp region from MESSENGER, J. Geophys. Res. Space Physics, 122, 4960 – 4975, doi: 10.1002/2016JA023548.
dc.identifier.citedreferenceYoshida, A., and H. Yamagishi ( 2010 ), Predicting amplitude of solar cycle 24 based on a new precursor method, Ann. Geophys., 28 ( 2 ), 417 – 425, doi: 10.5194/angeo‐28‐417‐2010.
dc.identifier.citedreferenceZhong, J., W. X. Wan, J. A. Slavin, Y. Wei, R. L. Lin, L. H. Chai, J. M. Raines, Z. J. Rong, and X. H. Han ( 2015a ), Mercury’s three‐dimensional asymmetric magnetopause, J. Geophys. Res. Space Physics, 120, 7658 – 7671, doi: 10.1002/2015JA021425.
dc.identifier.citedreferenceZhong, J., W. X. Wan, Y. Wei, J. A. Slavin, J. M. Raines, Z. J. Rong, L. H. Chai, and X. H. Han ( 2015b ), Compressibility of Mercury’s dayside magnetosphere, Geophys. Res. Lett., 42, 10,135 – 10,139, doi: 10.1002/2015GL067063.
dc.identifier.citedreferenceAnderson, B. J., M. H. Acuña, D. A. Lohr, J. Scheifele, A. Raval, H. Korth, and J. A. Slavin ( 2007 ), The magnetometer instrument on MESSENGER, Space Sci. Rev., 131 ( 1‐4 ), 417 – 450, doi: 10.1007/s11214‐007‐9246‐7.
dc.identifier.citedreferenceAnderson, B. J., C. L. Johnson, H. Korth, M. E. Purucker, R. M. Winslow, J. a. Slavin, S. C. Solomon, R. L. McNutt, J. M. Raines, and T. H. Zurbuchen ( 2011 ), The global magnetic field of Mercury from MESSENGER orbital observations, Science, 333 ( 6051 ), 1859 – 1862, doi: 10.1126/science.1211001.
dc.identifier.citedreferenceAnderson, B. J., et al. ( 2012 ), Low‐degree structure in Mercury’s planetary magnetic field, J. Geophys. Res., 117, E00L12, doi: 10.1029/2012JE004159.
dc.identifier.citedreferenceBalogh, A., and E. J. Smith ( 2001 ), The heliospheric magnetic field at solar maximum: Ulysses observations, Space Sci. Rev., 97 ( 1 ), 147 – 160, doi: 10.1023/A:1011854901760.
dc.identifier.citedreferenceBaumjohann, W., et al. ( 2006 ), The magnetosphere of Mercury and its solar wind environment: Open issues and scientific questions, Adv. Sp. Res., 38 ( 4 ), 604 – 609, doi: 10.1016/j.asr.2005.05.117.
dc.identifier.citedreferenceBehannon, K. W. ( 1978 ), Heliocentric distance dependence of the interplanetary magnetic field, Rev. Geophys., 16 ( 1 ), 125 – 145, doi: 10.1029/RG016i001p00125.
dc.identifier.citedreferenceBlomberg, L. G., J. A. Cumnock, K.‐H. Glassmeier, and R. A. Treumann ( 2007 ), Plasma waves in the Hermean magnetosphere, Space Sci. Rev., 132 ( 2‐4 ), 575 – 591, doi: 10.1007/s11214‐007‐9282‐3.
dc.identifier.citedreferenceBurlaga, L. ( 2001 ), Magnetic fields and plasmas in the inner heliosphere: Helios results, Planet. Space Sci., 49 ( 14 ), 1619 – 1627, doi: 10.1016/S0032‐0633(01)00098‐8.
dc.identifier.citedreferenceColeman, P. J. ( 1966 ), Variations in the interplanetary magnetic field: Mariner 2: 1. Observed properties, J. Geophys. Res., 71 ( 23 ), 5509 – 5531, doi: 10.1029/JZ071i023p05509.
dc.identifier.citedreferenceCowley, S. ( 1981a ), Magnetospheric asymmetries associated with the y ‐component of the IMF, Planet. Space Sci., 29 ( 1 ), 79 – 96, doi: 10.1016/0032‐0633(81)90141‐0.
dc.identifier.citedreferenceCowley, S. ( 1981b ), Asymmetry effects associated with the x ‐component of the IMF in a magnetically open magnetosphere, Planet. Space Sci., 29 ( 8 ), 809 – 818, doi: 10.1016/0032‐0633(81)90071‐4.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.
dc.identifier.citedreferenceFujimoto, M., W. Baumjohann, K. Kabin, R. Nakamura, J. A. Slavin, N. Terada, and L. Zelenyi ( 2007 ), Hermean magnetosphere‐solar wind interaction, Space Sci. Rev., 132 ( 2‐4 ), 529 – 550, doi: 10.1007/s11214‐007‐9245‐8.
dc.identifier.citedreferenceGershman, D. J., J. A. Slavin, J. M. Raines, T. H. Zurbuchen, B. J. Anderson, H. Korth, D. N. Baker, and S. C. Solomon ( 2013 ), Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath, J. Geophys. Res. Space Physics, 118, 7181 – 7199, doi: 10.1002/2013JA019244.
dc.identifier.citedreferenceGlassmeier, K.‐H., D. Klimushkin, C. Othmer, and P. Mager ( 2004 ), ULF waves at Mercury: Earth, the giants, and their little brother compared, Adv. Space Res., 33 ( 11 ), 1875 – 1883, doi: 10.1016/j.asr.2003.04.047.
dc.identifier.citedreferenceGosling, J. T., D. N. Baker, S. J. Bame, W. C. Feldman, R. D. Zwickl, and E. J. Smith ( 1985 ), North‐south and dawn‐dusk plasma asymmetries in the distant tail lobes: ISEE 3, J. Geophys. Res., 90 ( A7 ), 6354 – 6360, doi: 10.1029/JA090iA07p06354.
dc.identifier.citedreferenceHe, M., J. Vogt, D. Heyner, and J. Zhong ( 2017 ), Solar wind controls on Mercury’s magnetospheric cusp, J. Geophys. Res. Space Physics, 122, 6150 – 6164, doi: 10.1002/2016JA023687.
dc.identifier.citedreferenceHeyner, D., C. Nabert, E. Liebert, and K.‐H. Glassmeier ( 2016 ), Concerning reconnection‐induction balance at the magnetopause of Mercury, J. Geophys. Res. Space Physics, 121, 2935 – 2961, doi: 10.1002/2015JA021484.
dc.identifier.citedreferenceIp, W.‐H., and A. Kopp ( 2002 ), MHD simulations of the solar wind interaction with Mercury, J. Geophys. Res., 107 ( A11 ), 1348, doi: 10.1029/2001JA009171.
dc.identifier.citedreferenceJackman, C. M. ( 2004 ), Interplanetary magnetic field at ∼9 AU during the declining phase of the solar cycle and its implications for Saturn’s magnetospheric dynamics, J. Geophys. Res., 109, A11203, doi: 10.1029/2004JA010614.
dc.identifier.citedreferenceJia, X., J. A. Slavin, T. I. Gombosi, L. K. S. Daldorff, G. Toth, and B. van der Holst ( 2015 ), Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction, J. Geophys. Res. Space Physics, 120, 4763 – 4775, doi: 10.1002/2015JA021143.
dc.identifier.citedreferenceJohnson, C. L., et al. ( 2012 ), MESSENGER observations of Mercury’s magnetic field structure, J. Geophys. Res., 117, E00L14, doi: 10.1029/2012JE004217.
dc.identifier.citedreferenceKallio, E., and P. Janhunen ( 2003 ), Solar wind and magnetospheric ion impact on Mercury’s surface, Geophys. Res. Lett., 30 ( 17 ), 1877, doi: 10.1029/2003GL017842.
dc.identifier.citedreferenceKidder, A., R. M. Winglee, and E. M. Harnett ( 2008 ), Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation, J. Geophys. Res., 113 ( A9 ), A09223, doi: 10.1029/2008JA013038.
dc.identifier.citedreferenceKivelson, M. G., and C. T. Russell ( 1995 ), Introduction to Space Physics, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, C. L. Johnson, M. E. Purucker, R. M. Winslow, S. C. Solomon, and R. L. McNutt ( 2011a ), Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER Magnetometer observations, Geophys. Res. Lett., 38, L22201, doi: 10.1029/2011GL049451.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, T. H. Zurbuchen, J. A. Slavin, S. Perri, S. A. Boardsen, D. N. Baker, S. C. Solomon, and R. L. McNutt ( 2011b ), The interplanetary magnetic field environment at Mercury’s orbit, Planet. Space Sci., 59 ( 15 ), 2075 – 2085, doi: 10.1016/j.pss.2010.10.014.
dc.identifier.citedreferenceLe, G., P. J. Chi, X. Blanco‐Cano, S. Boardsen, J. A. Slavin, B. J. Anderson, and H. Korth ( 2013 ), Upstream ultra‐low frequency waves in Mercury’s foreshock region: MESSENGER magnetic field observations, J. Geophys. Res. Space Physics, 118, 2809 – 2823, doi: 10.1002/jgra.50342.
dc.identifier.citedreferenceLockwood, M., and J. Moen ( 1999 ), Reconfiguration and closure of lobe flux by reconnection during northward IMF: Possible evidence for signatures in cusp/cleft auroral emissions, Ann. Geophys., 17 ( 8 ), 996 – 1011, doi: 10.1007/s00585‐999‐0996‐2.
dc.identifier.citedreferenceLockwood, M., M. J. Owens, L. A. Barnard, S. Bentley, C. J. Scott, and C. E. Watt ( 2016 ), On the origins and timescales of geoeffective IMF, Space Weather, 14 ( 6 ), 406 – 432, doi: 10.1002/2016SW001375.
dc.identifier.citedreferenceLockwood, M., M. J. Owens, S. M. Imber, M. K. James, E. J. Bunce, and T. K. Yeoman ( 2017 ), Coronal and heliospheric magnetic flux circulation and its relation to open solar flux evolution, J. Geophys. Res. Space Physics, 122, 5870 – 5894, doi: 10.1002/2016JA023644.
dc.identifier.citedreferenceMaezawa, K. ( 1974 ), Dependence of the magnetopause position on the southward interplanetary magnetic field, Planet. Space Sci., 22 ( 10 ), 1443 – 1453, doi: 10.1016/0032‐0633(74)90040‐3.
dc.identifier.citedreferenceMariani, F., and F. M. Neubauer ( 1990 ), The Interplanetary Magnetic Field, 183  pp., Springer, Berlin.
dc.identifier.citedreferenceMassetti, S., S. Orsini, A. Milillo, A. Mura, E. D. Angelis, H. Lammer, and P. Wurz ( 2003 ), Mapping of the cusp plasma precipitation on the surface of Mercury, Icarus, 166 ( 2 ), 229 – 237, doi: 10.1016/j.icarus.2003.08.005.
dc.identifier.citedreferenceNess, N. F., K. W. Behannon, R. P. Lepping, and Y. C. Whang ( 1975 ), The magnetic field of Mercury, 1, J. Geophys. Res., 80 ( 19 ), 2708 – 2716, doi: 10.1029/JA080i019p02708.
dc.identifier.citedreferenceOwens, M. J., and R. J. Forsyth ( 2013 ), The heliospheric magnetic field, Living Rev. Sol. Phys., 10 ( 1 ), 5, doi: 10.12942/lrsp‐2013‐5.
dc.identifier.citedreferenceParker, E. N. ( 1958 ), Dynamics of the interplanetary gas and magnetic fields, Astrophys. J., 128, 664, doi: 10.1086/146579.
dc.identifier.citedreferencePerreault, P., and S.‐I. Akasofu ( 1978 ), A study of geomagnetic storms, Geophys. J. R. Astron. Soc., 54 ( 3 ), 547 – 573, doi: 10.1111/j.1365‐246X.1978.tb05494.x.
dc.identifier.citedreferencePoh, G., et al. ( 2016 ), MESSENGER observations of cusp plasma filaments at Mercury, J. Geophys. Res. Space Physics, 121, 8260 – 8285, doi: 10.1002/2016JA022552.
dc.identifier.citedreferenceRaines, J. M., D. J. Gershman, J. A. Slavin, T. H. Zurbuchen, H. Korth, B. J. Anderson, and S. C. Solomon ( 2014 ), Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions, J. Geophys. Res. Space Physics, 119, 6587 – 6602, doi: 10.1002/2014JA020120.
dc.identifier.citedreferenceRussell, C. T. ( 2013 ), Solar wind and interplanetary magnetic field: A tutorial, in Space Weather, vol. 125, pp. 73 – 89, AGU, Washington, D. C., doi: 10.1029/GM125p0073.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.