Show simple item record

Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds

dc.contributor.authorKlimov, Pavel B.
dc.contributor.authorMironov, Sergey V.
dc.contributor.authorOconnor, Barry M.
dc.date.accessioned2017-10-23T17:32:01Z
dc.date.available2018-12-03T15:34:05Zen
dc.date.issued2017-10
dc.identifier.citationKlimov, Pavel B.; Mironov, Sergey V.; Oconnor, Barry M. (2017). "Detecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds." Evolution 71(10): 2381-2397.
dc.identifier.issn0014-3820
dc.identifier.issn1558-5646
dc.identifier.urihttps://hdl.handle.net/2027.42/138927
dc.description.abstractInferring cophylogeographic events requires matching the timing of these events on both host and symbiont (e.g., parasites) phylogenies because divergences of hosts and their symbionts may not temporally coincide, and host switches may occur. We investigate a large radiation of birds (Passeriformes) and their permanent symbionts, the proctophyllodid feather mites (117 species from 116 bird species; six genes, 11,468 nt aligned) using two time‐calibration strategies for mites: fossils only and host phylogeography only. Out of 10 putative cophylogeographic events 4 agree in timing for both symbiont and host events being synchronous co‐origins or codispersals; three were based on host shifts, but agree in timing being very close to the origin of modern hosts; two disagree; and one large basal mite split was seemingly independent from host phylogeography. Among these events was an ancient (21–25.3 Mya), synchronous codispersal from the Old World leading to the origin and diversifications of New World emberizoid passerids and their mites, the thraupis + quadratus species groups of Proctophyllodes. Our framework offers a more robust detection of host and symbiont cophylogeographic events (as compared to host‐symbiont reconciliation analysis and using host phylogeography for time‐calibration) and provides independent data for testing alternative hypotheses on timing of host diversification and dispersal.
dc.publisherChicago Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othersymbiosis
dc.subject.otherphylogeography
dc.subject.otherparasitism
dc.subject.otherCoevolution
dc.titleDetecting ancient codispersals and host shifts by double dating of host and parasite phylogenies: Application in proctophyllodid feather mites associated with passerine birds
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/1/evo13309-sup-0003-figureS3.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/2/evo13309.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/3/evo13309-sup-0006-figureS6.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/4/evo13309_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/5/evo13309-sup-0009-figureS9.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/6/evo13309-sup-0005-figureS5.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/7/evo13309-sup-0004-figureS4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/8/evo13309-sup-0002-figureS2.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/138927/9/evo13309-sup-0008-figureS8.pdf
dc.identifier.doi10.1111/evo.13309
dc.identifier.sourceEvolution
dc.identifier.citedreferencePaterson, A. M., and J. Banks. 2001. Analytical approaches to measuring cospeciation of host and parasites: through a glass, darkly. Int. J. Parasitol. 31: 1012 – 1022.
dc.identifier.citedreferenceRannala, B., and Y. Michalakis, eds. 2003. Population genetics and cospeciation: from process to pattern. Chicago Univ. Press, Chicago.
dc.identifier.citedreferenceRonquist, F. 1995. Reconstructing the history of host‐parasite associations using generalised parsimony. Cladistics 11: 73 – 89.
dc.identifier.citedreferenceRonquist, F. ed. 2003. Parsimony analysis of coevolving species associations. Chicago Univ. Press, Chicago.
dc.identifier.citedreferenceRutschmann, F., T. Eriksson, K. Abu Salim, and E. Conti. 2007. Assessing calibration uncertainty in molecular dating: the assignment of fossils to alternative calibration points. Syst. Biol. 56: 591 – 608.
dc.identifier.citedreferenceSanders, K. L., and M. S. Y. Lee. 2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3: 275 – 279.
dc.identifier.citedreferenceSauquet, H., S. Y. W. Ho, M. A. Gandolfo, G. J. Jordan, P. Wilf, D. J. Cantrill, M. J. Bayly, L. Bromham, G. K. Brown, R. J. Carpenter, et al. 2012. Testing the impact of calibration on molecular divergence times using a fossil‐rich group: the case of nothofagus (Fagales). Syst. Biol. 61: 289 – 313.
dc.identifier.citedreferenceSidorchuk, E. A., and P. B. Klimov. 2011. Redescription of Acarus rhombeus Koch & Berendt, 1854 (Acari: Astigmata: Glaesacarus, Glaesacaridae gen. et fam. nov.) from Baltic amber (Upper Eocene): evidence for female‐controlled mating. J. Syst. Palaeontol. 9: 183 – 196.
dc.identifier.citedreferenceSmith, B. T., R. W. Bryson, Jr., V. Chua, L. Africa, and J. Klicka. 2013. Speciational history of North American Haemorhous finches (Aves: Fringillidae) inferred from multilocus data. Mol. Phylogenet. Evol. 66: 1055 – 1059.
dc.identifier.citedreferenceSmith, S. A., and B. C. O’Meara. 2012. TreePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28: 2689 – 2690.
dc.identifier.citedreferenceSmith, V. S., T. Ford, K. P. Johnson, P. C. D. Johnson, K. Yoshizawa, and J. E. Light. 2011. Multiple lineages of lice pass through the K‐Pg boundary. Biol. Lett. 7: 782 – 785.
dc.identifier.citedreferenceSorenson, M. D., C. N. Balakrishnan, and R. B. Payne. 2004. Clade‐limited colonization in brood parasitic finches ( Vidua spp.). Syst. Biol. 53: 140 – 153.
dc.identifier.citedreferenceStefka, J., P. E. A. Hoeck, L. F. Keller, and V. S. Smith. 2011. A hitchhikers guide to the Galapagos: co‐phylogeography of Galapagos mockingbirds and their parasites. BMC Evol. Biol. 11: 1 – 18.
dc.identifier.citedreferenceSubias, L. S., and A. Arillo. 2002. Oribatid mite fossils from the Upper Devonian of South Mountain, New York and the Lower Carboniferous of County Antrim, Northern Ireland (Acariformes, Oribatida). Estud. Mus. Cienc. Nat. Alava 17: 93 – 106.
dc.identifier.citedreferenceTamura, K., F. U. Battistuzzi, P. Billing‐Ross, O. Murillo, A. Filipski, and S. Kumar. 2012. Estimating divergence times in large molecular phylogenies. Proc. Natl. Acad. Sci. USA 109: 19333 – 19338.
dc.identifier.citedreferenceTürk, E. 1963. A new tyroglyphid deutonymph in amber from Chiapas, Mexico. Univ. Calif. Publ. Entomol. 31: 49 – 51.
dc.identifier.citedreferencevan Tuinen, M., and S. B. Hedges. 2001. Calibration of avian molecular clocks. Mol. Biol. Evol. 18: 206 – 213.
dc.identifier.citedreferenceWeckstein, J. D. 2004. Biogeography explains cophylogenetic patterns in toucan chewing lice. Syst. Biol. 53: 154 – 164.
dc.identifier.citedreferenceWerth, S., A. M. Millanes, M. Wedin, and C. Scheidegger. 2013. Lichenicolous fungi show population subdivision by host species but do not share population history with their hosts. Fungal. Biol. 117: 71 – 84.
dc.identifier.citedreferenceYuri, T., and D. P. Mindell. 2002. Molecular phylogenetic analysis of Fringillidae, "New World nine‐primaried oscines" (Aves: Passeriformes). Mol. Phylogenet. Evol. 23: 229 – 243.
dc.identifier.citedreferenceZhu, Q. Y., M. W. Hastriter, M. F. Whiting, and K. Dittmar. 2015. Fleas (Siphonaptera) are Cretaceous, and evolved with Theria. Mol. Phylogenet. Evol. 90: 129 – 139.
dc.identifier.citedreferenceZuccon, D., R. Prys‐Jones, P. C. Rasmussen, and P. G. P. Ericson. 2012. The phylogenetic relationships and generic limits of finches (Fringillidae). Mol. Phylogenet. Evol. 62: 581 – 596.
dc.identifier.citedreferenceArnaiz‐Villena, A., M. Alvarez‐Tejado, V. Ruiz‐del‐Valle, C. Garcia‐de‐la‐Torre, P. Varela, M. J. Recio, S. Ferre, and J. Martinez‐Laso. 1998. Phylogeny and rapid Northern and Southern Hemisphere speciation of goldfinches during the Miocene and Pliocene Epochs. Cell. Mol. Life Sci. 54: 1031 – 1041.
dc.identifier.citedreferenceAtyeo, W. T. 1966. A new genus and six new species of feather mites primarily from Tyranni (Acarina; Proctophyllodidae). J. Kans. Entomol. Soc. 39: 481 – 492.
dc.identifier.citedreferenceAtyeo, W. T., and N. L. Braasch. 1966. The feather mite genus Proctophyllodes (Sarcoptiformes: Proctophyllodidae). Bull. Univ. Nebr. State Mus. 5: 1 – 354.
dc.identifier.citedreferenceAtyeo, W. T., and J. Gaud. 1968. Two feather mite genera (Analgoidea, Proctophyllodidae) from birds of the families Oxyruncidae and Pipridae (Passeriformes, Tyranni). Bull. Univ. Nebr. State Mus. 8: 209 – 215.
dc.identifier.citedreferenceAtyeo, W. T. and J. Gaud 1983. Feather mites of obligate brood parasites. J. Parasitol. 69: 455 – 458.
dc.identifier.citedreferenceBalbuena, J. A., R. Miguez‐Lozano, and I. Blasco‐Costa. 2013. PACo: a novel procrustes application to cophylogenetic analysis. PLoS ONE 8: 1 – 15.
dc.identifier.citedreferenceBanks, J. C., R. L. Palma, and A. M. Paterson. 2005. Cophylogenetic relationships between penguins and their chewing lice. J. Evol. Biol. 19: 156 – 166.
dc.identifier.citedreferenceBarker, F. K., K. J. Burns, J. Klicka, S. M. Lanyon, and I. J. Lovette. 2013. Going to extremes: contrasting rates of diversification in a recent radiation of New World passerine birds. Syst. Biol. 62: 298 – 320.
dc.identifier.citedreferenceBarker, F. K., K. J. Burns, J. Klicka, S. M. Lanyon, and I. J. Lovette. 2015. New insights into New World biogeography: an integrated view from the phylogeny of blackbirds, cardinals, sparrows, tanagers, warblers, and allies. Auk 132: 333 – 348.
dc.identifier.citedreferenceBarker, F. K., A. Cibois, P. Schikler, J. Feinstein, and J. Cracraft. 2004. Phylogeny and diversification of the largest avian radiation. Proc. Natl. Acad. Sci. USA 101: 11040 – 11045.
dc.identifier.citedreferenceBehnke, J. M., P. K. Mcgregor, M. Shepherd, R. Wiles, C. Barnard, F. S. Gilbert, and J. L. Hurst. 1995. Identity, prevalence and intensity of infestation with wing feather mites on birds (Passeriformes) from the Setubal peninsula of Portugal. Exp. Appl. Acarol. 19: 443 – 458.
dc.identifier.citedreferenceBochkov, A. V., P. B. Klimov, G. Hestvik, and A. P. Saveljev. 2014. Integrated Bayesian species delimitation and morphological diagnostics of chorioptic mange mites (Acariformes: Psoroptidae: Chorioptes ). Parasitol. Res. 113: 2603 – 2627.
dc.identifier.citedreferenceBouckaert, R., J. Heled, D. Kuhnert, T. Vaughan, C. H. Wu, D. Xie, M. A. Suchard, A. Rambaut, and A. J. Drummond. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comp. Biol. 10: 1 – 6.
dc.identifier.citedreferenceCardinal, S., and B. N. Danforth. 2013. Bees diversified in the age of eudicots. Proc. R Soc. Biol. Sci. Ser B 280: 9 pp.
dc.identifier.citedreferenceCarson, R. J., and G. S. Spicer. 2003. A phylogenetic analysis of the emberizid sparrows based on three mitochondrial genes. Mol. Phylogenet. Evol. 29: 43 – 57.
dc.identifier.citedreferenceCharleston, M. A., and D. L. Robertson. 2002. Preferential host switching by primate lentiviruses can account for phylogenetic similarity with the primate phylogeny. Syst. Biol. 51: 528 – 535.
dc.identifier.citedreferenceCibois, A., B. Slikas, T. S. Schulenberg, and E. Pasquet. 2001. An endemic radiation of Malagasy songbirds is revealed by mitochondrial DNA sequence data. Evolution 55: 1198 – 1206.
dc.identifier.citedreferenceClayton, D. H., S. Al‐Tamimi, and K. Johnson, eds. 2003. The ecological basis of coevolutionary history. Chicago Univ. Press, Chicago.
dc.identifier.citedreferenceConow, C., D. Fielder, Y. Ovadia, and R. Libeskind‐Hadas. 2010. Jane: a new tool for the cophylogeny reconstruction problem. Algorithms Mol. Biol. 5: 1 – 10.
dc.identifier.citedreferenceCracraft, J. 2001. Avian evolution, Gondwana biogeography and the Cretaceous‐Tertiary mass extinction event. Proc. R Soc. B Biol. Sci. 268: 459 – 469.
dc.identifier.citedreferenceCracraft, J., and F. Barker. 2009. Passerine birds (Passeriformes). Pp. 423 – 431 in S. B. Hedges, and S. Kumar, eds. The timetree of life. Oxford Univ. Press, New York.
dc.identifier.citedreferenceCsardi, G., and T. Nepusz. 2006. The igraph software package for complex network research. Inter J. Complex Syst. 1695: 1 – 9.
dc.identifier.citedreferenceDabert, J. 2003. The feather mite family Syringobiidae Trouessart, 1896 (Acari, Astigmata, Pterolichoidea). II. Phylogeny and host‐parasite evolutionary relationships. Acta Parasitol. 48: S185 – S233.
dc.identifier.citedreferenceDabert, J. 2005. Feather mites (Astigmata; Pterolichoidea, Analgoidea) and birds as models for cophylogenetic studies. Phytophaga Palermo 14: 409 – 424.
dc.identifier.citedreferenceDabert, J., and S. V. Mironov. 1999. Origin and evolution of feather mites (Astigmata). Exp. Appl. Acarol. 23: 437 – 454.
dc.identifier.citedreferencede Vienne, D. M., T. Giraud, and J. A. Shykoff. 2007. When can host shifts produce congruent host and parasite phylogenies? A simulation approach. J. Evol. Biol. 20: 1428 – 1438.
dc.identifier.citedreferencede Vienne, D. M., G. Refregier, M. Lopez‐Villavicencio, A. Tellier, M. E. Hood, and T. Giraud. 2013. Cospeciation vs host‐shift speciation: methods for testing, evidence from natural associations and relation to coevolution. New Phytol. 198: 347 – 385.
dc.identifier.citedreferenceDemastes, J. W., T. A. Spradling, M. S. Hafner, G. R. Spies, D. J. Hafner, and J. E. Light. 2012. Cophylogeny on a fine scale: Geomydoecus chewing lice and their pocket gopher hosts, Pappogeomys bulleri. J. Parasitol. 98: 262 – 270.
dc.identifier.citedreferenceDrummond, A. J., S. Y. W. Ho, M. J. Phillips, and A. Rambaut. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4: 699 – 710.
dc.identifier.citedreferenceDubinin, V. B. 1951. Per’evuye kleshchi Analgesoidea. Chast’ I. Vvedenie v ikh izuchenie [ = Feather mites Analgesoidea. Part I. Introduction to their study]. Pp. 363 in E. N. Pavlovskiy, and A. A. Shtakelberg, eds. Fauna SSSR: Paukoobraznuye. Akademiya Nauk SSSR, Moscow‐Leningrad.
dc.identifier.citedreferenceDubinin, V. B. 1962. Class Acaromorpha. Ticks, mites or gnathosomous chelicerates. Pp. 681 – 722 in B. B. Rohdendorf, ed. Fundamentals of paleontology. Volume 9. Arthropoda, Tracheata, Chelicerata. [Osnovy paleontoligii. A manual for paleontologists and geologists of the USSR, translated by IPST Staff]. Smithsonian Institution Libraries and National Science Foundation, Washington, D.C.
dc.identifier.citedreferenceEhrnsberger, R., S. V. Mironov, and J. Dabert. 2001. A preliminary analysis of phylogenetic relationships of the feather mite family Freyanidae Dubinin, 1953 (Acari: Astigmata). Biol. Bull. Poznań 38: 181 – 201.
dc.identifier.citedreferenceEricson, P. G., S. Klopfstein, M. Irestedt, J. M. Nguyen, and J. A. Nylander. 2014. Dating the diversification of the major lineages of Passeriformes (Aves). BMC Evol. Biol. 14: 8.
dc.identifier.citedreferenceEricson, P. G. P., L. Christidis, A. Cooper, M. Irestedt, J. Jackson, U. S. Johansson, and J. A. Norman. 2002. A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proc. R Soc. Biol. Sci. Ser. B 269: 235 – 241.
dc.identifier.citedreferenceFjeldsa, J. 2013. The global diversification of songbirds (Oscines) and the build‐up of the Sino‐Himalayan diversity hotspot. Chin. Birds 4: 132 – 143.
dc.identifier.citedreferenceForest, F. 2009. Calibrating the tree of life: fossils, molecules and evolutionary timescales. Ann. Bot. 104: 789 – 794.
dc.identifier.citedreferenceFritz, S. A., K. A. Jonsson, J. Fjeldsa, and C. Rahbek. 2012. Diversification and biogeographic patterns in four island radiations of passerine birds. Evolution 66: 179 – 190.
dc.identifier.citedreferenceGaud, J., and W. T. Atyeo. 1996. Feather mites of the World (Acarina, Astigmata): the supraspecific taxa. Part 1. Text. Koninklijk Museum voor Midden Afrika / Tervuren Belgie Annalen Zoologische Wetenschappen 277: 1 – 193.
dc.identifier.citedreferenceHafner, M. S., and R. D. M. Page. 1995. Molecular phylogenies and host‐parasite cospeciation—gophers and lice as a model system. Philos. Trans. R Soc. Lond. Ser. B Biol. Sci. 349: 77 – 83.
dc.identifier.citedreferenceHafner, M. S., P. D. Sudman, F. X. Villablanca, T. A. Spradling, J. W. Demastes, and S. A. Nadler. 1994. Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265: 1087 – 1090.
dc.identifier.citedreferenceHernandes, F. A., and M. P. Valim. 2014. On the identity of two species of Proctophyllodidae (Acari: Astigmata: Analgoidea) described by Herbert F. Berla in Brazil, with a description of Lamellodectes gen. nov and a new species. Zootaxa 3794: 179 – 200.
dc.identifier.citedreferenceHerrera, C. S., Y. Hirooka, and P. Chaverri. 2016. Pseudocospeciation of the mycoparasite Cosmospora with their fungal hosts. Ecol. Evol. 6: 1504 – 1514.
dc.identifier.citedreferenceHirst, S. 1923. On some arachnid remains from the Old Red Sandstone (Rhynie Chert bed, Aberdeenshire). Annal. Mag. Nat. Hist. Series 9 12: 455 – 474 + 455 plates.
dc.identifier.citedreferenceHo, S. Y. W., and M. J. Phillips. 2009. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst. Biol. 58: 367 – 380.
dc.identifier.citedreferenceHughes, J., M. Kennedy, K. P. Johnson, R. L. Palma, and R. D. M. Page. 2007. Multiple cophylogenetic analyses reveal frequent cospeciation between pelecaniform birds and Pectinopygus lice. Syst. Biol. 56: 232 – 251.
dc.identifier.citedreferenceHuyse, T., R. Poulin, and A. Theron. 2005. Speciation in parasites: a population genetics approach. Trends Parasitol. 21: 469 – 475.
dc.identifier.citedreferenceIrestedt, M., and J. I. Ohlson. 2008. The division of the major songbird radiation into Passerida and ‘core Corvoidea’ (Aves: Passeriformes)—the species tree vs. gene trees. Zool. Scr. 37: 305 – 313.
dc.identifier.citedreferenceJetz, W., G. H. Thomas, J. B. Joy, K. Hartmann, and A. O. Mooers. 2012. The global diversity of birds in space and time. Nature 491: 444 – 448.
dc.identifier.citedreferenceJohnson, K. P., and D. H. Clayton. 2003. Coevolutionary history of ecological replicates: comparing phylogenies of wing and body lice to columbiform hosts. Pp. 262 – 286 in R. D. M. Page, ed. Tangled trees: phylogeny, cospeciation, and coevolution. Chicago Univ. Press, Chicago and London.
dc.identifier.citedreferenceJonsson, K. A., P. H. Fabre, R. E. Ricklefs, and J. Fjeldsa. 2011. Major global radiation of corvoid birds originated in the proto‐Papuan archipelago. Proc. Natl. Acad. Sci. USA 108: 2328 – 2333.
dc.identifier.citedreferenceKlicka, J., F. K. Barker, K. J. Burns, S. M. Lanyon, I. J. Lovette, J. A. Chaves, and R. W. Bryson, Jr. 2014. A comprehensive multilocus assessment of sparrow (Aves: Passerellidae) relationships. Mol. Phylogenet. Evol. 77: 177 – 182.
dc.identifier.citedreferenceKlicka, J., K. P. Johnson, and S. M. Lanyon. 2000. New World nine‐primaried oscine relationships: constructing a mitochondrial DNA framework. Auk 117: 321 – 336.
dc.identifier.citedreferenceKlimov, P. B., and B. M. OConnor. 2008. Origin and higher‐level relationships of psoroptidian mites (Acari: Astigmata: Psoroptidia): evidence from three nuclear genes. Mol. Phylogenet. Evol. 47: 1135 – 1156.
dc.identifier.citedreferenceKlimov, P. B. and B. M. OConnor 2013. Is permanent parasitism reversible? Critical evidence from early evolution of house dust mites. Syst. Biol. 62: 411 – 423.
dc.identifier.citedreferenceKlimov, P. B., B. M. OConnor, and L. L. Knowles. 2007. Museum specimens and phylogenies elucidate ecology’ s role in coevolutionary associations between mites and their bee hosts. Evolution 61: 1368 – 1379.
dc.identifier.citedreferenceKnowles, L., and P. B. Klimov. 2011. Estimating phylogenetic relationships despite discordant gene trees across loci: the species tree of a diverse species group of feather mites (Acari: Proctophyllodidae). Parasitology 138: 1750 – 1759.
dc.identifier.citedreferenceKrivolutsky, D. A., and B. A. Krasilov. 1977. Oribatid mites from the Upper Jura deposits of the USSR. Pp. 16 – 24 in O. A. Skarlato, and Y. S. Balashov, eds. Morfologiya i diagnostika klechshey [ = Morphology and Diagnostics of Mites]. Zoological Institute Publ, Leningrad.
dc.identifier.citedreferenceKudon, L. H. 1982. Host relationships of the feather mite genus Platyacarus Kudon (Acarina: Proctophyllodidae) with a key to the species. J. Ga Entomol. Soc. 17: 545 – 552.
dc.identifier.citedreferenceLanfear, R., B. Calcott, S. Y. Ho, and S. Guindon. 2012. Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29: 1695 – 1701.
dc.identifier.citedreferenceLegendre, P., Y. Desdevises, and E. Bazin. 2002. A statistical test for host‐parasite coevolution. Syst. Biol. 51: 217 – 234.
dc.identifier.citedreferenceLevin, I. I., and P. G. Parker. 2013. Comparative host‐parasite population genetic structures: obligate fly ectoparasites on Galapagos seabirds. Parasitology 140: 1061 – 1069.
dc.identifier.citedreferenceLight, J. E., and M. S. Hafner. 2008. Codivergence in heteromyid rodents (Rodentia: Heteromyidae) and their sucking lice of the genus Fahrenholzia (Phthiraptera: Anoplura). Syst. Biol. 57: 449 – 465.
dc.identifier.citedreferenceLight, J. E., V. S. Smith, J. M. Allen, L. A. Durden, and D. L. Reed. 2010. Evolutionary history of mammalian sucking lice (Phthiraptera: Anoplura). BMC Evol. Biol. 10: 15.
dc.identifier.citedreferenceLivezey, B. C., and R. L. Zusi. 2007. Higher‐order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool. J. Linn. Soc. 149: 1 – 95.
dc.identifier.citedreferenceLopez‐Vaamonde, C., N. Wikstrom, C. Labandeira, H. C. J. Godfray, S. J. Goodman, and J. M. Cook. 2006. Fossil‐calibrated molecular phylogenies reveal that leaf‐mining moths radiated millions of years after their host plants. J. Evol. Biol. 19: 1314 – 1326.
dc.identifier.citedreferenceLovette, I. J., J. L. Perez‐Eman, J. P. Sullivan, R. C. Banks, I. Fiorentino, S. Cordoba‐Cordoba, M. Echeverry‐Galvis, F. K. Barker, K. J. Burns, J. Klicka, et al. 2010. A comprehensive multilocus phylogeny for the wood‐warblers and a revised classification of the Parulidae (Aves). Mol. Phylogenet. Evol. 57: 753 – 770.
dc.identifier.citedreferenceLukoschek, V., J. S. Keogh, and J. C. Avise. 2012. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches. Syst. Biol. 61: 22 – 43.
dc.identifier.citedreferenceMatzke, N. J. 2013. Probabilistic historical biogeography: new models for founder‐event speciation, imperfect detection, and fossils allow improved accuracy and model‐testing. Front. Biogeogr. 5: 242 – 248.
dc.identifier.citedreferenceMayr, G. 2004. Old world fossil record of modern‐type hummingbirds. Science 304: 861 – 864.
dc.identifier.citedreferenceMcGuire, J. A., C. C. Witt, J. V. Remsen, Jr., A. Corl, D. L. Rabosky, D. L. Altshuler, and R. Dudley. 2014. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24: 910 – 916.
dc.identifier.citedreferenceMironov, S. 2005. Phylogeny of the feather mite family Xolalidae [Xolalgidae] (Astigmata: Analgoidea) and coevolutionary trends with non‐passerine birds. Phytophaga Palermo 14: 433 – 449.
dc.identifier.citedreferenceMironov, S. 2009. Phylogeny of feather mites of the subfamily Pterodectinae (Acariformes: Proctophyllodidae) and their host associations with passerines (Passeriformes). Tr. Zool. Inst. 313: 97 – 118.
dc.identifier.citedreferenceMironov, S. V., and G. Kopij. 1996. Three new species of the feather mite family Proctophyllodidae (Acarina: Analgoidea) from some South African passerine birds (Aves: Passeriformes). Acarina 4: 27 – 33.
dc.identifier.citedreferenceMironov, S. V., and B. M. OConnor. 2017. A new feather mite of the genus Neodectes Park and Atyeo 1971 (Acari: Proctophyllodidae) from New Zealand wrens (Passeriformes: Acanthisittidae). Acta Parasitol. 62: 171 – 177.
dc.identifier.citedreferenceMoyle, R. G., R. T. Chesser, R. O. Prum, P. Schikler, and J. Cracraft. 2006. Phylogeny and evolutionary history of Old World suboscine birds (Aves: Eurylaimides). Am. Mus. Novit. 3544: 1 – 22.
dc.identifier.citedreferenceNear, T. J., P. A. Meylan, and H. B. Shaffer. 2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165: 137 – 146.
dc.identifier.citedreferenceNorton, R. A., P. M. Bonamo, J. D. Grierson, and W. A. Shear. 1988. Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J. Paleontol. 62: 259 – 269.
dc.identifier.citedreferenceOConnor, B. M. 2009. Cohort Astigmatina. Pp. 565 – 657 in G. W. Krantz, and D. E. Walter, eds. A manual of acarology. 3rd ed. Texas Tech Univ. Press, Lubbock, Texas.
dc.identifier.citedreferenceOhlson, J., J. Fjeldsa, and P. G. P. Ericson. 2008. Tyrant flycatchers coming out in the open: phylogeny and ecological radiation of Tyrannidae (Aves, Passeriformes). Zool. Scr. 37: 315 – 335.
dc.identifier.citedreferencePacheco, M. A., F. U. Battistuzzi, M. Lentino, R. F. Aguilar, S. Kumar, and A. A. Escalante. 2011. Evolution of modern birds revealed by mitogenomics: timing the radiation and origin of major orders. Mol. Biol. Evol. 28: 1927 – 1942.
dc.identifier.citedreferencePage, R. D. M. 1991. Clocks, clades, and cospeciation—comparing rates of evolution and timing of cospeciation events in host‐parasite assemblages. Syst. Zool. 40: 188 – 198.
dc.identifier.citedreferencePage, R. D. M. 1993. Parasites, phylogeny and cospeciation. Int. J. Parasitol. 23: 499 – 506.
dc.identifier.citedreferencePage, R. D. M. 1994. Parallel phylogenies: reconstructing the history of host‐parasite assemblages. Cladistics 10: 155 – 173.
dc.identifier.citedreferencePage, R. D. M. ed. 2003. Introduction. Chicago Univ. Press, Chicago.
dc.identifier.citedreferencePark, C. K., and W. T. Atyeo. 1971a. A generic revision of the Pterodectinae, a new subfamily of feather mites (Sarcoptiformes: Analgoidea). Bull. Univ. Neb. St. Mus. 9: 39 – 88.
dc.identifier.citedreferencePark, C. K. and W. T. Atyeo 1971b. A new subfamily and genus of feather mites from hummingbirds (Acarina: Proctophyllodidae). Fla Entomol. 54: 221 – 229.
dc.identifier.citedreferencePaterson, A. M., and R. D. Gray. 1997. Host‐parasite co‐speciation, host switching, and missing the boat. Pp. 236 – 250 in D. H. Clayton, and J. Moore, eds. Host‐parasite evolution: general principles and avian models. Oxford Univ. Press, Oxford, New York etc.
dc.identifier.citedreferencePaterson, A. M., G. P. Wallis, L. J. Wallis, and R. D. Gray. 2000. Seabird and louse coevolution: complex histories revealed by 12S rRNA sequences and reconciliation analyses. Syst. Biol. 49: 383 – 399.
dc.identifier.citedreferencePercy, D., R. Page, and Q. Cronk. 2004. Plant‐insect interactions: double‐dating associated insect and plant lineages reveals asynchronous radiations. Syst. Biol. 53: 120 – 127.
dc.identifier.citedreferencePowell, A. F. L. A., F. K. Barker, S. M. Lanyon, K. J. Burns, J. Klicka, and I. J. Lovette. 2014. A comprehensive species‐level molecular phylogeny of the New World blackbirds (Icteridae). Mol. Phylogenet. Evol. 71: 94 – 112.
dc.identifier.citedreferenceProctor, H., and I. Owens. 2000. Mites and birds: diversity, parasitism and coevolution. Trends Ecol. Evol. 15: 358 – 364.
dc.identifier.citedreferenceProctor, H. C. 2003. Feather mites (Acari: Astigmata): ecology, behavior and evolution. Annu. Rev. Entomol. 48: 185 – 209.
dc.identifier.citedreferencePrum, R. O., J. S. Berv, A. Dornburg, D. J. Field, J. P. Townsend, E. M. Lemmon, and A. R. Lemmon. 2015. A comprehensive phylogeny of birds (Aves) using targeted next‐generation DNA sequencing. Nature 526: 569 – 573.
dc.identifier.citedreferenceRambaut, A. 2009. FigTree v1.4.2. Available online at http://tree.bio.ed.ac.uk/software/figtree/.
dc.identifier.citedreferenceRambaut, A., and A. J. Drummond. 2009. Tracer v1.6. Available from http://beast.bio.ed.ac.uk/Tracer.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.