Adaptive testing for association between two random vectors in moderate to high dimensions
dc.contributor.author | Xu, Zhiyuan | |
dc.contributor.author | Xu, Gongjun | |
dc.contributor.author | Pan, Wei | |
dc.date.accessioned | 2017-10-23T17:32:06Z | |
dc.date.available | 2019-01-07T18:34:38Z | en |
dc.date.issued | 2017-11 | |
dc.identifier.citation | Xu, Zhiyuan; Xu, Gongjun; Pan, Wei (2017). "Adaptive testing for association between two random vectors in moderate to high dimensions." Genetic Epidemiology 41(7): 599-609. | |
dc.identifier.issn | 0741-0395 | |
dc.identifier.issn | 1098-2272 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/138931 | |
dc.description.abstract | Testing for association between two random vectors is a common and important task in many fields, however, existing tests, such as Escoufier’s RV test, are suitable only for low‐dimensional data, not for high‐dimensional data. In moderate to high dimensions, it is necessary to consider sparse signals, which are often expected with only a few, but not many, variables associated with each other. We generalize the RV test to moderate‐to‐high dimensions. The key idea is to data adaptively weight each variable pair based on its empirical association. As the consequence, the proposed test is adaptive, alleviating the effects of noise accumulation in high‐dimensional data, and thus maintaining the power for both dense and sparse alternative hypotheses. We show the connections between the proposed test with several existing tests, such as a generalized estimating equations‐based adaptive test, multivariate kernel machine regression (KMR), and kernel distance methods. Furthermore, we modify the proposed adaptive test so that it can be powerful for nonlinear or nonmonotonic associations. We use both real data and simulated data to demonstrate the advantages and usefulness of the proposed new test. The new test is freely available in R package aSPC on CRAN at https://cran.r-project.org/web/packages/aSPC/index.html and https://github.com/jasonzyx/aSPC. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Department de math.; Univ. des sciences et techniques du Languedoc | |
dc.subject.other | aSPC test | |
dc.subject.other | RV test | |
dc.subject.other | GEE‐aSPU test | |
dc.subject.other | eQTL | |
dc.subject.other | dCov test | |
dc.title | Adaptive testing for association between two random vectors in moderate to high dimensions | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | |
dc.subject.hlbsecondlevel | Biological Chemistry | |
dc.subject.hlbsecondlevel | Genetics | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/138931/1/gepi22059_am.pdf | |
dc.description.bitstreamurl | https://deepblue.lib.umich.edu/bitstream/2027.42/138931/2/gepi22059.pdf | |
dc.identifier.doi | 10.1002/gepi.22059 | |
dc.identifier.source | Genetic Epidemiology | |
dc.identifier.citedreference | Kim, J., Zhang, Y., & Pan, W. ( 2016 ). Powerful and adaptive testing for multi‐trait and multi‐SNP associations with GWAS and sequencing data. Genetics 203 ( 2 ), 715 – 731. | |
dc.identifier.citedreference | Escoufier, Y. ( 1973 ). Le traitement des variables vectorielles. Biometrics 29 ( 4 ), 751 – 760. | |
dc.identifier.citedreference | Fan, R., Chiu, C., Jung, J., Weeks, D. E., Wilson, A. F., Bailey‐Wilson, J. E., … Xiong, M. ( 2016 ). A comparison study of fixed and mixed effect models for gene level association studies of complex traits. Genetic Epidemiology 40 ( 8 ), 702 – 721. | |
dc.identifier.citedreference | He, Z., Zhang, M., Lee, S., Smith, J. A., Guo, X., Palmas, W., … Mukherjee, B. ( 2015 ). Set‐based tests for genetic association in longitudinal studies. Biometrics 71 ( 3 ), 606 – 615. | |
dc.identifier.citedreference | Hua, W. Y., & Ghosh, D. ( 2015 ). Equivalence of kernel machine regression and kernel distance covariance for multidimensional phenotype association studies. Biometrics 71 ( 3 ), 812 – 820. | |
dc.identifier.citedreference | Josse, J., & Holmes, S. ( 2014 ). Measures of dependence between random vectors and tests of independence. Literature review. Ithaca, NY: Cornell University Library. Retrieved from http://arxiv.org/pdf/1307.7383v3.pdf (accessed November 22, 2014). | |
dc.identifier.citedreference | Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., & Tanabe, M. ( 2016 ). KEGG as a reference resource for gene and protein annotation. Nucleic Acids Research 44 ( D1 ), D457 – D462. | |
dc.identifier.citedreference | Liang, K. Y., & Zeger, S. L. ( 1986 ). Longitudinal data analysis using generalized linear models. Biometrika 73 ( 1 ), 13 – 22. | |
dc.identifier.citedreference | Xu, G., Lin, L., Wei, P., & Pan, W. ( 2016 ). An adaptive two‐sample test for high‐dimensional means. Biometrika 103 ( 3 ), 609 – 624. | |
dc.identifier.citedreference | Wang, Z., Xu, K., Zhang, X., Wu, X., & Wang, Z. ( 2017 ). Longitudinal SNP‐set association analysis of quantitative phenotypes. Genetic Epidemiology 41 ( 1 ), 81 – 93. | |
dc.identifier.citedreference | Wang, Y., Liu, A., Mills, J. L., Boehnke, M., Wilson, A. F., Bailey‐Wilson, J. E., … Fan, R. ( 2015 ). Pleiotropy analysis of quantitative traits at gene level by multivariate functional linear models. Genetic Epidemiology 39 ( 4 ), 259 – 275. | |
dc.identifier.citedreference | Wang, X., Lee, S., Zhu, X., Redline, S., & Lin, X. ( 2013 ). GEE‐based SNP set association test for continuous and discrete traits in family‐based association studies. Genetic Epidemiology 37 ( 8 ), 778 – 786. | |
dc.identifier.citedreference | Székely, G. J., Rizzo, M. L., & Bakirov, N. K. ( 2007 ). Measuring and testing dependence by correlation of distances. Annals of Statistics 35 ( 6 ), 2769 – 2794. | |
dc.identifier.citedreference | Spearman, C. E. ( 1904a ). The proof and measurement of association between two things. American Journal of Psychology 15 ( 1 ), 72 – 101. | |
dc.identifier.citedreference | Sejdinovic, D., Sriperumbudur, B., Gretton, A., & Fukumizu, K. ( 2013 ). Equivalence of distance‐based and RKHS‐based statistics in hypothesis testing. Annals of Statistics 41 ( 5 ), 2263 – 2291. | |
dc.identifier.citedreference | Minas, C., Curry, E., & Montana, G. ( 2013 ). A distance‐based test of association between paired heterogeneous genomic data. Bioinformatics 29 ( 20 ), 2555 – 2563. | |
dc.identifier.citedreference | Mantel, N. ( 1967 ) The detection of disease clustering and a generalized regression approach. Cancer Research 27 ( 2 Part 1 ), 209 – 220. | |
dc.identifier.citedreference | Maity, A., Sullivan, P. F., & Tzeng, J. Y. ( 2012 ). Multivariate phenotype association analysis by marker‐set kernel machine regression. Genetic Epidemiology 36 ( 7 ), 686 – 695. | |
dc.identifier.citedreference | Colantuoni, C., Lipska, B. K., Ye, T., Hyde, T. M., Tao, R., Leek, J. T., … Kleinman, J. E. ( 2011 ). Temporal dynamics and genetic control of transcription in the human prefrontal cortex. Nature 478 ( 7370 ), 519–523. | |
dc.identifier.citedreference | Escoufier, Y. ( 1970 ). Echantillonnage dans une population de variables aléatoires réelles. Department de math.; Univ. des sciences et techniques du Languedoc, Languedoc, France. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.