Show simple item record

Multi‐century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution

dc.contributor.authorGriffith, Daniel M.
dc.contributor.authorCotton, Jennifer M.
dc.contributor.authorPowell, Rebecca L.
dc.contributor.authorSheldon, Nathan D.
dc.contributor.authorStill, Christopher J.
dc.date.accessioned2017-11-13T16:40:15Z
dc.date.available2019-01-07T18:34:38Zen
dc.date.issued2017-11
dc.identifier.citationGriffith, Daniel M.; Cotton, Jennifer M.; Powell, Rebecca L.; Sheldon, Nathan D.; Still, Christopher J. (2017). "Multi‐century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution." Journal of Biogeography 44(11): 2564-2574.
dc.identifier.issn0305-0270
dc.identifier.issn1365-2699
dc.identifier.urihttps://hdl.handle.net/2027.42/139065
dc.description.abstractAimsUnderstanding the functional response of ecosystems to past global change is crucial to predicting performance in future environments. One sensitive and functionally significant attribute of grassland ecosystems is the percentage of species that use the C4 versus C3 photosynthetic pathway. Grasses using C3 and C4 pathways are expected to have different responses to many aspects of anthropogenic environmental change that have followed the industrial revolution, including increases in temperature and atmospheric CO2, changes to land management and fire regimes, precipitation seasonality, and nitrogen deposition. In spite of dramatic environmental changes over the past 300 years, it is unknown if the C4 grass percentage in grasslands has shifted.LocationContiguous United States of America.MethodsHere, we used stable carbon isotope data (i.e. δ13C) from 30 years of soil samples, as well as herbivore tissues that date to 1739 CE, to reconstruct coarse‐grain C3 and C4 grass composition in North American grassland sites to compare with modern vegetation. We spatially resampled these three datasets to a shared 100‐km grid, allowing comparison of δ13C values at a resolution and extent common for climate model outputs and biogeographical studies.ResultsAt this spatial grain, the bison tissue proxy was superior to the soil proxy because the soils reflect integration of local carbon inputs, whereas bison sample vegetation across landscapes. Bison isotope values indicate that historical grassland photosynthetic‐type composition was similar to modern vegetation.Main conclusionsDespite major environmental change, comparing modern plot vegetation data to three centuries of bison δ13C data revealed that the biogeographical distribution of C3 and C4 grasses has not changed significantly since the 1700s. This is particularly surprising given the expected CO2 fertilization of C3 grasses. Our findings highlight the critical importance of capturing the full range of physiological, ecological and demographical processes in biosphere models predicting future climates and ecosystems.
dc.publisherTall Timbers Research Station
dc.publisherWiley Periodicals, Inc.
dc.subject.otherNorth America
dc.subject.otherspatial scale
dc.subject.othervegetation stasis
dc.subject.otherδ13C
dc.subject.othergrass
dc.subject.otherbison
dc.subject.otherenvironmental change
dc.subject.otherC4 photosynthesis
dc.subject.othergrassland biogeography
dc.titleMulti‐century stasis in C3 and C4 grass distributions across the contiguous United States since the industrial revolution
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeography and Maps
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139065/1/jbi13061.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139065/2/jbi13061_am.pdf
dc.identifier.doi10.1111/jbi.13061
dc.identifier.sourceJournal of Biogeography
dc.identifier.citedreferenceR Core Team ( 2016 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
dc.identifier.citedreferenceOsborne, C. P., Salomaa, A., Kluyver, T. A., Visser, V., Kellogg, E. A., Morrone, O., … Simpson, D. A. ( 2014 ). A global database of C 4 photosynthesis in grasses. New Phytologist, 204, 441 – 446.
dc.identifier.citedreferenceParuelo, J. M., & Lauenroth, W. K. ( 1996 ). Relative abundance of plant functional types in grasslands and shrublands of North America. Ecological Applications, 6, 1212 – 1224.
dc.identifier.citedreferencePassey, B. H., Cerling, T. E., Perkins, M. E., Voorhies, M. R., Harris, J. M., & Tucker, S. T. ( 2002 ). Environmental change in the Great Plains: An isotopic record from fossil horses. The Journal of Geology, 110, 123 – 140.
dc.identifier.citedreferencePowell, R. L., Yoo, E.‐H., & Still, C. J. ( 2012 ). Vegetation and soil carbon‐13 isoscapes for South America: Integrating remote sensing and ecosystem isotope measurements. Ecosphere, 3, 1 – 25.
dc.identifier.citedreferencePower, M. J., Marlon, J., Ortiz, N., Bartlein, P. J., Harrison, S. P., Mayle, F. E., … Mooney, S. ( 2008 ). Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics, 30, 887 – 907.
dc.identifier.citedreferenceRamankutty, N., & Foley, J. A. ( 1999 ). Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochemical Cycles, 13, 997 – 1027.
dc.identifier.citedreferenceRipple, W. J., Beschta, R. L., & Painter, L. E. ( 2015 ). Trophic cascades from wolves to alders in Yellowstone. Forest Ecology and Management, 354, 254 – 260.
dc.identifier.citedreferenceRosseel, Y. ( 2012 ). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 1 – 36.
dc.identifier.citedreferenceSage, R. F., Christin, P. A., & Edwards, E. J. ( 2011 ). The C4 plant lineages of planet Earth. Journal of Experimental Botany, 62, 3155 – 3169.
dc.identifier.citedreferenceSage, R. F., & Sultmanis, S. ( 2016 ). Why are there no C4 forests? Journal of Plant Physiology, 203, 55 – 68.
dc.identifier.citedreferenceScheiter, S., Higgins, S. I., Osborne, C. P., Bradshaw, C., Lunt, D., Ripley, B. S., … Beerling, D. J. ( 2012 ). Fire and fire‐adapted vegetation promoted C 4 expansion in the late Miocene. New Phytologist, 195, 653 – 666.
dc.identifier.citedreferenceSegers, J. L., & Broders, H. G. ( 2015 ). Carbon (δ13C) and nitrogen (δ15N) stable isotope signatures in bat fur indicate swarming sites have catchment areas for bats from different summering areas. PLoS ONE, 10, e0125755.
dc.identifier.citedreferenceSexton, J. O., Song, X.‐P., Feng, M., Noojipady, P., Anand, A., Huang, C., … Townshend, J. R. ( 2013 ). Global, 30‐m resolution continuous fields of tree cover: Landsat‐based rescaling of MODIS vegetation continuous fields with lidar‐based estimates of error. International Journal of Digital Earth, 6, 427 – 448.
dc.identifier.citedreferenceStill, C. J., Berry, J. A., Collatz, G. J., & DeFries, R. S. ( 2003 ). Global distribution of C 3 and C 4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 17, 1006.
dc.identifier.citedreferenceStohlgren, T. J., Bull, K. A., & Otsuki, Y. ( 1998 ). Comparison of rangeland vegetation sampling techniques in the Central Grasslands. Journal of Range Management, 51, 164 – 172.
dc.identifier.citedreferenceStrömberg, C. ( 2011 ). Evolution of grasses and grassland ecosystems. Annual Review of Earth and Planetary Sciences, 39, 517 – 544.
dc.identifier.citedreferenceTeeri, J. A., & Stowe, L. G. ( 1976 ). Climatic patterns and the distribution of C 4 grasses in North America. Oecologia, 23, 1 – 12.
dc.identifier.citedreferenceTieszen, L. L. ( 1994 ). Stable isotopes on the plains: Vegetation analyses and diet determinations. In D. W. Owsley, & R. L. Jantz (Eds.), Skeletal biology in the great plains: A multidisciplinary view (pp. 261 – 282 ). Washington, DC: Smithsonian Press.
dc.identifier.citedreferenceTilman, D., & Wedin, D. ( 1991 ). Dynamics of nitrogen competition between successional grasses. Ecology, 72, 1038 – 1049.
dc.identifier.citedreferenceTipple, B. J., Meyers, S. R., & Pagani, M. ( 2010 ). Carbon isotope ratio of Cenozoic CO 2: A comparative evaluation of available geochemical proxies: CENOZOIC δ 13C CO 2. Paleoceanography, 25, PA3202.
dc.identifier.citedreferenceVitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., … Tilman, D. G. ( 1997 ). Technical report: Human alteration of the global nitrogen cycle: Sources and consequences. Ecological Applications, 7, 737.
dc.identifier.citedreferencevon Fischer, J. C., Tieszen, L. L., & Schimel, D. S. ( 2008 ). Climate controls on C 3 vs. C 4 productivity in North American grasslands from carbon isotope composition of soil organic matter. Global Change Biology, 14, 1141 – 1155.
dc.identifier.citedreferenceWidga, C. J., Walker, D., & Stockli, L. D. ( 2010 ). Middle Holocene bison diet and mobility in the Eastern Great Plains (USA) based on δ 13C, δ 18O, and 87Sr/86Sr analyses of tooth enamel carbonate. Quaternary Research, 73, 449 – 463.
dc.identifier.citedreferenceWinslow, J. C., Hunt, E. R., & Piper, S. C. ( 2003 ). The influence of seasonal water availability on global C 3 versus C 4 grassland biomass and its implications for climate change research. Ecological Modelling, 163, 153 – 173.
dc.identifier.citedreferenceWood, S. N. ( 2011 ). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society B, 73, 3 – 36.
dc.identifier.citedreferenceWynn, J. G., & Bird, M. I. ( 2007 ). C4‐derived soil organic carbon decomposes faster than its C3 counterpart in mixed C3/C4 soils. Global Change Biology, 13, 2206 – 2217.
dc.identifier.citedreferenceWynn, J. G., Bird, M. I., Vellen, L., Grand‐Clement, E., Carter, J., & Berry, S. L. ( 2006 ). Continental‐scale measurement of the soil organic carbon pool with climatic, edaphic, and biotic controls. Global Biogeochemical Cycles, 20, 2 – 12.
dc.identifier.citedreferenceAngelo, C. L., & Pau, S. ( 2015 ). Root biomass and soil δ13C in C3 and C4 grasslands along a precipitation gradient. Plant Ecology, 216, 615 – 627.
dc.identifier.citedreferenceAsner, G. P., Scurlock, J. M., & Hicke, J. A. ( 2003 ). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12, 191 – 205.
dc.identifier.citedreferenceAuerswald, K., Wittmer, M., Männel, T. T., Bai, Y. F., Schäufele, R., & Schnyder, H. ( 2009 ). Large regional‐scale variation in C3/C4 distribution pattern of Inner Mongolia steppe is revealed by grazer wool carbon isotope composition. Biogeosciences Discussions, 6, 545 – 574.
dc.identifier.citedreferenceAyliffe, L. K., Cerling, T. E., Robinson, T., West, A. G., Sponheimer, M., Passey, B. H., … Ehleringer, J. R. ( 2004 ). Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia, 139, 11 – 22.
dc.identifier.citedreferenceBai, E., Boutton, T. W., Liu, F., Wu, X. B., Hallmark, C. T., & Archer, S. R. ( 2012 ). Spatial variation of soil δ13C and its relation to carbon input and soil texture in a subtropical lowland woodland. Soil Biology and Biochemistry, 44, 102 – 112.
dc.identifier.citedreferenceBeerling, D. J., & Royer, D. L. ( 2011 ). Convergent cenozoic CO2 history. Nature Geoscience, 4, 418 – 420.
dc.identifier.citedreferenceBlunden, J., & Arndt, D. S. ( 2016 ). State of the climate in 2015. Bulletin of the American Meteorological Society, 97, Si – S275.
dc.identifier.citedreferenceBond, W. J., & Midgley, G. F. ( 2012 ). Carbon dioxide and the uneasy interactions of trees and savannah grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 367, 601 – 612.
dc.identifier.citedreferenceBowen, G. J. ( 2010 ). Isoscapes: Spatial pattern in isotopic biogeochemistry. Annual Review of Earth and Planetary Sciences, 38, 161 – 187.
dc.identifier.citedreferenceBowling, D. R., Pataki, D. E., & Randerson, J. T. ( 2008 ). Carbon isotopes in terrestrial ecosystem pools and CO 2 fluxes. New Phytologist, 178, 24 – 40.
dc.identifier.citedreferenceCerling, T. E., & Harris, J. M. ( 1999 ). Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia, 120, 347 – 363.
dc.identifier.citedreferenceCerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., & Ehleringer, J. R. ( 1997 ). Global vegetation change through the Miocene/Pliocene boundary. Nature, 389, 153 – 158.
dc.identifier.citedreferenceCerling, T. E., Wynn, J. G., Andanje, S. A., Bird, M. I., Korir, D. K., Levin, N. E., … Remien, C. H. ( 2011 ). Woody cover and hominin environments in the past 6 million years. Nature, 476, 51 – 56.
dc.identifier.citedreferenceChen, S. T., Smith, S. Y., Sheldon, N. D., & Strömberg, C. A. E. ( 2015 ). Regional‐scale variability in the spread of grasslands in the late Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 437, 42 – 52.
dc.identifier.citedreferenceCollatz, G. J., Berry, J. A., & Clark, J. S. ( 1998 ). Effects of climate and atmospheric CO 2 partial pressure on the global distribution of C 4 grasses: Present, past, and future. Oecologia, 114, 441 – 454.
dc.identifier.citedreferenceCoppedge, B. R., Leslie, D. M. Jr, & Shaw, J. H. ( 1998 ). Botanical composition of bison diets on tallgrass prairie in Oklahoma. Journal of Range Management, 51, 379 – 382.
dc.identifier.citedreferenceCotton, J. M., Cerling, T. E., Hoppe, K. A., Mosier, T. M., & Still, C. J. ( 2016 ). Climate, CO 2, and the history of North American grasses since the Last Glacial Maximum. Science Advances, 2, e1501346 – e1501346.
dc.identifier.citedreferenceCotton, J. M., & Sheldon, N. D. ( 2012 ). New constraints on using paleosols to reconstruct atmospheric pCO2. Geological Society of America Bulletin, 124, 1411 – 1423.
dc.identifier.citedreferenceDawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., & Tu, K. P. ( 2002 ). Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507 – 559.
dc.identifier.citedreferenceDiefendorf, A. F., Mueller, K. E., Wing, S. L., Koch, P. L., & Freeman, K. H. ( 2010 ). Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences USA, 107, 5738 – 5743.
dc.identifier.citedreferenceDunn, R. E., Stromberg, C. A. E., Madden, R. H., Kohn, M. J., & Carlini, A. A. ( 2015 ). Linked canopy, climate, and faunal change in the Cenozoic of Patagonia. Science, 347, 258 – 261.
dc.identifier.citedreferenceEhleringer, J. R., Buchmann, N., & Flanagan, L. B. ( 2000 ). Carbon isotope ratios in belowground carbon cycle processes. Ecological Applications, 10, 412 – 422.
dc.identifier.citedreferenceEhleringer, J. R., Cerling, T. E., & Helliker, B. R. ( 1997 ). C 4 photosynthesis, atmospheric CO 2, and climate. Oecologia, 112, 285 – 299.
dc.identifier.citedreferenceFarquhar, G. D., Ehleringer, J. R., & Hubick, K. T. ( 1989 ). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503 – 537.
dc.identifier.citedreferenceFox, D. L., & Koch, P. L. ( 2003 ). Tertiary history of C4 biomass in the Great Plains, USA. Geology, 31, 809.
dc.identifier.citedreferenceFriedli, H., Lötscher, H., Oeschger, H., Siegenthaler, U., & Stauffer, B. ( 1986 ). Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature, 324, 237 – 238.
dc.identifier.citedreferenceGadbury, C., Todd, L. C., Jahren, A. H., & Amundson, R. ( 2000 ). Spatial and temporal variations in the isotopic composition of bison tooth enamel from the Early Holocene Hudson – Meng Bone Bed, Nebraska. Palaeogeography, Palaeoclimatology, Palaeoecology, 157, 79 – 93.
dc.identifier.citedreferenceGoodchild, M. F. ( 2011 ). Scale in GIS: An overview. Geomorphology, 130, 5 – 9.
dc.identifier.citedreferenceGrace, J. B., Anderson, T. M., Olff, H., & Scheiner, S. M. ( 2010 ). On the specification of structural equation models for ecological systems. Ecological Monographs, 80, 67 – 87.
dc.identifier.citedreferenceGrace, J.B., Smith, M.D., Grace, S.L., Collins, S.L., & Stohlgren, T.J. ( 2001 ). Interactions between fire and invasive plants in temperate grasslands of North America. In: Proceedings of the Invasive Species Workshop: The Role of Fire in the Control and Spread of Invasive Species (eds Galley K. M. & Wilson T. P ). Tall Timbers Research Station, Tallahassee, FL, pp. 40 – 65.
dc.identifier.citedreferenceGrass Phylogeny Working Group II. ( 2012 ). New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins. New Phytologist, 193, 304 – 312.
dc.identifier.citedreferenceGriffith, D. M., Anderson, T. M., Osborne, C. P., Strömberg, C. A. E., Forrestel, E. J., & Still, C. J. ( 2015 ). Biogeographically distinct controls on C 3 and C 4 grass distributions: Merging community and physiological ecology: Climate disequilibrium in C 4 grass distributions. Global Ecology and Biogeography, 24, 304 – 313.
dc.identifier.citedreferenceHeckathorn, S. A., McNaughton, S. J., & Coleman, J. S. ( 1999 ). C 4 plants and herbivory. R. F. Sage, & R. K. Monson (Eds.), C4 plant biology (pp. 285 – 312 ). San Diego, CA: Academic Press.
dc.identifier.citedreferenceHobson, K. A. ( 1999 ). Tracing origins and migration of wildlife using stable isotopes: A review. Oecologia, 120, 314 – 326.
dc.identifier.citedreferenceHobson, K. A., Møller, A. P., & Van Wilgenburg, S. L. ( 2012 ). A multi‐isotope (δ13C, δ15N, δ2H) approach to connecting European breeding and African wintering populations of barn swallow ( Hirundo rustica ). Animal Migration, 1, 1 – 20.
dc.identifier.citedreferenceHoppe, K. A., Paytan, A., & Chamberlain, P. ( 2006 ). Reconstructing grassland vegetation and paleotemperatures using carbon isotope ratios of bison tooth enamel. Geology, 34, 649 – 652.
dc.identifier.citedreferenceJenkins, D. G., & Ricklefs, R. E. ( 2011 ). Biogeography and ecology: Two views of one world. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2331 – 2335.
dc.identifier.citedreferenceKaplan, J. O., Prentice, I. C., & Buchmann, N. ( 2002 ). The stable carbon isotope composition of the terrestrial biosphere: Modeling at scales from the leaf to the globe. Global Biogeochemical Cycles, 16, 8‐1 – 8‐11.
dc.identifier.citedreferenceKeeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., & Meijer, H. A. ( 2005 ). Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle implications. In J. R. Ehleringer, T. E. Cerling, & M. D. Dearing (Eds.), A history of atmospheric CO 2 and its effects on plants, animals, and ecosystems (pp. 83 – 113 ). New York: Springer‐Verlag.
dc.identifier.citedreferenceKohn, M. J. ( 2010 ). Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences USA, 107, 19691 – 19695.
dc.identifier.citedreferenceKohn, M. J., & Fremd, T. J. ( 2008 ). Miocene tectonics and climate forcing of biodiversity Western United States. Geology, 36, 783.
dc.identifier.citedreferenceKohn, M. J., & McKay, M. P. ( 2012 ). Paleoecology of Late Pleistocene‐Holocene faunas of Eastern and Central Wyoming, USA, with implications for LGM climate models. Palaeogeography, Palaeoclimatology, Palaeoecology, 326–328, 42 – 53.
dc.identifier.citedreferenceLadd, B., Peri, P. L., Pepper, D. A., Silva, L. C. R., Sheil, D., Bonser, S. P., … Bird, M. ( 2014 ). Carbon isotopic signatures of soil organic matter correlate with leaf area index across woody biomes. Journal of Ecology, 102, 1606 – 1611.
dc.identifier.citedreferenceLeavitt, S. W., Follett, R. F., Kimble, J. M., & Pruessner, E. G. ( 2007 ). Radiocarbon and δ13C depth profiles of soil organic carbon in the U.S. Great Plains: A possible spatial record of paleoenvironment and paleovegetation. Quaternary International, 162–163, 21 – 34.
dc.identifier.citedreferenceLiang, L. L., Riveros‐Iregui, D. A., & Risk, D. A. ( 2016 ). Spatial and seasonal variabilities of the stable carbon isotope composition of soil CO 2 concentration and flux in complex terrain: Variability of the δ 13 C in Soil CO 2. Journal of Geophysical Research: Biogeosciences, 121, 2328 – 2339.
dc.identifier.citedreferenceLong, S. P. ( 1999 ). Environmental responses. R. F. Sage, & R. K. Monson (Eds.), C4 plant biology (pp. 285 – 312 ). San Diego, CA: Academic Press.
dc.identifier.citedreferenceLüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U., … Stocker, T. ( 2008 ). High‐resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 379 – 382.
dc.identifier.citedreferenceMacKenzie, K. M., Palmer, M. R., Moore, A., Ibbotson, A. T., Beaumont, W. R. C., Poulter, D. J. S., & Trueman, C. N. ( 2011 ). Locations of marine animals revealed by carbon isotopes. Scientific Reports, 1, 21.
dc.identifier.citedreferenceMeagher, M. ( 1989 ). Range expansion by bison of Yellowstone National Park. Journal of Mammalogy, 70, 670 – 675.
dc.identifier.citedreferenceMorgan, J. A., LeCain, D. R., Pendall, E., Blumenthal, D. M., Kimball, B. A., Carrillo, Y., … West, M. ( 2011 ). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi‐arid grassland. Nature, 476, 202 – 205.
dc.identifier.citedreferenceNachtergaele, F, van Velthuizen, H, & Verelst, L. ( 2009 ). Harmonized World Soil Database, Version 1.1 FAO and IIASA, Rome, Italy and Luxemburg, Austria.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.