Show simple item record

Predictive model for inflammation grades of chronic hepatitis B: Large‐scale analysis of clinical parameters and gene expressions

dc.contributor.authorZhou, Weichen
dc.contributor.authorMa, Yanyun
dc.contributor.authorZhang, Jun
dc.contributor.authorHu, Jingyi
dc.contributor.authorZhang, Menghan
dc.contributor.authorWang, Yi
dc.contributor.authorLi, Yi
dc.contributor.authorWu, Lijun
dc.contributor.authorPan, Yida
dc.contributor.authorZhang, Yitong
dc.contributor.authorZhang, Xiaonan
dc.contributor.authorZhang, Xinxin
dc.contributor.authorZhang, Zhanqing
dc.contributor.authorZhang, Jiming
dc.contributor.authorLi, Hai
dc.contributor.authorLu, Lungen
dc.contributor.authorJin, Li
dc.contributor.authorWang, Jiucun
dc.contributor.authorYuan, Zhenghong
dc.contributor.authorLiu, Jie
dc.date.accessioned2017-11-13T16:41:30Z
dc.date.available2019-01-07T18:34:39Zen
dc.date.issued2017-11
dc.identifier.citationZhou, Weichen; Ma, Yanyun; Zhang, Jun; Hu, Jingyi; Zhang, Menghan; Wang, Yi; Li, Yi; Wu, Lijun; Pan, Yida; Zhang, Yitong; Zhang, Xiaonan; Zhang, Xinxin; Zhang, Zhanqing; Zhang, Jiming; Li, Hai; Lu, Lungen; Jin, Li; Wang, Jiucun; Yuan, Zhenghong; Liu, Jie (2017). "Predictive model for inflammation grades of chronic hepatitis B: Large‐scale analysis of clinical parameters and gene expressions." Liver International 37(11): 1632-1641.
dc.identifier.issn1478-3223
dc.identifier.issn1478-3231
dc.identifier.urihttps://hdl.handle.net/2027.42/139116
dc.description.abstractBackgroundLiver biopsy is the gold standard to assess pathological features (eg inflammation grades) for hepatitis B virus‐infected patients although it is invasive and traumatic; meanwhile, several gene profiles of chronic hepatitis B (CHB) have been separately described in relatively small hepatitis B virus (HBV)‐infected samples. We aimed to analyse correlations among inflammation grades, gene expressions and clinical parameters (serum alanine amino transaminase, aspartate amino transaminase and HBV‐DNA) in large‐scale CHB samples and to predict inflammation grades by using clinical parameters and/or gene expressions.MethodsWe analysed gene expressions with three clinical parameters in 122 CHB samples by an improved regression model. Principal component analysis and machine‐learning methods including Random Forest, K‐nearest neighbour and support vector machine were used for analysis and further diagnosis models. Six normal samples were conducted to validate the predictive model.ResultsSignificant genes related to clinical parameters were found enriching in the immune system, interferon‐stimulated, regulation of cytokine production, anti‐apoptosis, and etc. A panel of these genes with clinical parameters can effectively predict binary classifications of inflammation grade (area under the ROC curve [AUC]: 0.88, 95% confidence interval [CI]: 0.77‐0.93), validated by normal samples. A panel with only clinical parameters was also valuable (AUC: 0.78, 95% CI: 0.65‐0.86), indicating that liquid biopsy method for detecting the pathology of CHB is possible.ConclusionsThis is the first study to systematically elucidate the relationships among gene expressions, clinical parameters and pathological inflammation grades in CHB, and to build models predicting inflammation grades by gene expressions and/or clinical parameters as well.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherHBV infection
dc.subject.otherclinical predictive model
dc.subject.othergene expressions
dc.subject.otherinflammation grades
dc.titlePredictive model for inflammation grades of chronic hepatitis B: Large‐scale analysis of clinical parameters and gene expressions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialties
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139116/1/liv13427.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139116/2/liv13427_am.pdf
dc.identifier.doi10.1111/liv.13427
dc.identifier.sourceLiver International
dc.identifier.citedreferenceLee JY, Chae DW, Kim SM, et al. Expression of FasL and perforin/granzyme B mRNA in chronic hepatitis B virus infection. J Viral Hepat. 2004; 11: 130 ‐ 135.
dc.identifier.citedreferenceChinese Society of Hepatology CMA, Chinese Society of Infectious Diseases CMA, Hou JL, et al. The guideline of prevention and treatment for chronic hepatitis B: a 2015 update. Zhonghua Gan Zang Bing Za Zhi. 2015; 23: 888 ‐ 905.
dc.identifier.citedreferenceLi W, Zhao J, Zou Z, et al. Analysis of hepatitis B virus intrahepatic covalently closed circular DNA and serum viral markers in treatment‐naive patients with acute and chronic HBV infection. PLoS One. 2014; 9: e89046.
dc.identifier.citedreferenceter Borg MJ, van Zonneveld M, Zeuzem S, et al. Patterns of viral decline during PEG‐interferon alpha‐2b therapy in HBeAg‐positive chronic hepatitis B: relation to treatment response. Hepatology. 2006; 44: 721 ‐ 727.
dc.identifier.citedreferenceBarrett T, Edgar R. Mining microarray data at NCBI’s Gene Expression Omnibus (GEO)*. Methods Mol Biol. 2006; 338: 175 ‐ 190.
dc.identifier.citedreferenceHe D, Liu ZP, Honda M, et al. Coexpression network analysis in chronic hepatitis B and C hepatic lesions reveals distinct patterns of disease progression to hepatocellular carcinoma. J Mol Cell Biol. 2012; 4: 140 ‐ 152.
dc.identifier.citedreferenceUra S, Honda M, Yamashita T, et al. Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology. 2009; 49: 1098 ‐ 1112.
dc.identifier.citedreferenceHe D, Li M, Guo S, et al. Expression pattern of serum cytokines in hepatitis B virus infected patients with persistently normal alanine aminotransferase levels. J Clin Immunol. 2013; 33: 1240 ‐ 1249.
dc.identifier.citedreferenceCastera L. Noninvasive methods to assess liver disease in patients with hepatitis B or C. Gastroenterology. 2012; 142: 1293 ‐ 1302 e4.
dc.identifier.citedreferenceXu WS, Qiu XM, Ou QS, et al. Red blood cell distribution width levels correlate with liver fibrosis and inflammation: a noninvasive serum marker panel to predict the severity of fibrosis and inflammation in patients with hepatitis B. Medicine (Baltimore). 2015; 94: e612.
dc.identifier.citedreferencePraneenararat S, Chamroonkul N, Sripongpun P, et al. HBV DNA level could predict significant liver fibrosis in HBeAg negative chronic hepatitis B patients with biopsy indication. BMC Gastroenterol. 2014; 14: 218.
dc.identifier.citedreferenceDesmet VJ, Gerber M, Hoofnagle JH, et al. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology. 1994; 19: 1513 ‐ 1520.
dc.identifier.citedreferenceBedossa P, Poynard T. An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology. 1996; 24: 289 ‐ 293.
dc.identifier.citedreferenceIrizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003; 4: 249 ‐ 264.
dc.identifier.citedreferenceEfron B, Hastie T, Johnstone I, et al. Least angle regression. Ann Stat. 2004; 32: 407 ‐ 499.
dc.identifier.citedreferenceMontojo J, Zuberi K, Rodriguez H, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics. 2010; 26: 2927 ‐ 2928.
dc.identifier.citedreferenceDíaz‐Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006; 7: 3.
dc.identifier.citedreferenceWang Y, Li Y, Pu W, et al. Random bits forest: a strong classifier/regressor for big data. Sci Rep. 2016; 6: 30086.
dc.identifier.citedreferencePeng G, Luo L, Siu H, et al. Gene and pathway‐based second‐wave analysis of genome‐wide association studies. Eur J Hum Genet. 2010; 18: 111 ‐ 117.
dc.identifier.citedreferenceRaychaudhuri S, Stuart JM, Altman RB. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput. 2000; 455 ‐ 466.
dc.identifier.citedreferenceNewton RH, Leverrier S, Srikanth S, et al. Protein kinase D orchestrates the activation of DRAK2 in response to TCR‐induced Ca2+ influx and mitochondrial reactive oxygen generation. J Immunol. 2011; 186: 940 ‐ 950.
dc.identifier.citedreferenceHofmann I, Schlechter T, Kuhn C, et al. Protein p0071—an armadillo plaque protein that characterizes a specific subtype of adherens junctions. J Cell Sci. 2009; 122: 21 ‐ 24.
dc.identifier.citedreferenceNi Y, Lempp FA, Mehrle S, et al. Hepatitis B and D viruses exploit sodium taurocholate co‐transporting polypeptide for species‐specific entry into hepatocytes. Gastroenterology. 2014; 146: 1070 ‐ 1083.
dc.identifier.citedreferenceLi J, Qi B, Chen P, et al. The expression of CD2 in chronic HBV infection. Cell Mol Immunol. 2008; 5: 69 ‐ 73.
dc.identifier.citedreferencePark IY, Sohn BH, Yu E, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology. 2007; 132: 1476 ‐ 1494.
dc.identifier.citedreferenceKou XX, Hao T, Meng Z, et al. Acetylated Sp1 inhibits PTEN expression through binding to PTEN core promoter and recruitment of HDAC1 and promotes cancer cell migration and invasion. Carcinogenesis. 2013; 34: 58 ‐ 67.
dc.identifier.citedreferenceHorikawa I, Barrett JC. Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms. Carcinogenesis. 2003; 24: 1167 ‐ 1176.
dc.identifier.citedreferenceUesugi K, Hiasa Y, Tokumoto Y, et al. Wilms’ tumor 1 gene modulates Fas‐related death signals and anti‐apoptotic functions in hepatocellular carcinoma. J Gastroenterol. 2013; 48: 1069 ‐ 1080.
dc.identifier.citedreferenceLi HG, Xie DR, Shen XM, et al. Clinicopathological significance of expression of paxillin, syndecan‐1 and EMMPRIN in hepatocellular carcinoma. World J Gastroenterol. 2005; 11: 1445 ‐ 1451.
dc.identifier.citedreferenceSong Z, Li R, You N, et al. Loss of heterozygosity of the tumor suppressor gene Tg737 in the side population cells of hepatocellular carcinomas is associated with poor prognosis. Mol Biol Rep. 2010; 37: 4091 ‐ 4101.
dc.identifier.citedreferenceRaimondi C, Chikh A, Wheeler AP, et al. A novel regulatory mechanism links PLCgamma1 to PDK1. J Cell Sci. 2012; 125: 3153 ‐ 3163.
dc.identifier.citedreferenceAbuli A, Fernandez‐Rozadilla C, Giraldez MD, et al. A two‐phase case‐control study for colorectal cancer genetic susceptibility: candidate genes from chromosomal regions 9q22 and 3q22. Br J Cancer. 2011; 105: 870 ‐ 875.
dc.identifier.citedreferenceRajkumar T, Vijayalakshmi N, Gopal G, et al. Identification and validation of genes involved in gastric tumorigenesis. Cancer Cell Int. 2010; 10: 45.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.