Show simple item record

Pseudomonas aeruginosa defense systems against microbicidal oxidants

dc.contributor.authorGroitl, Bastian
dc.contributor.authorDahl, Jan‐ulrik
dc.contributor.authorSchroeder, Jeremy W.
dc.contributor.authorJakob, Ursula
dc.date.accessioned2017-11-13T16:41:35Z
dc.date.available2019-01-07T18:34:39Zen
dc.date.issued2017-11
dc.identifier.citationGroitl, Bastian; Dahl, Jan‐ulrik ; Schroeder, Jeremy W.; Jakob, Ursula (2017). "Pseudomonas aeruginosa defense systems against microbicidal oxidants." Molecular Microbiology 106(3): 335-350.
dc.identifier.issn0950-382X
dc.identifier.issn1365-2958
dc.identifier.urihttps://hdl.handle.net/2027.42/139121
dc.publisherWiley Periodicals, Inc.
dc.titlePseudomonas aeruginosa defense systems against microbicidal oxidants
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139121/1/mmi13768_am.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139121/2/mmi13768-sup-0004-suppinfo4.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139121/3/mmi13768.pdf
dc.description.bitstreamurlhttps://deepblue.lib.umich.edu/bitstream/2027.42/139121/4/mmi13768-sup-0001-suppinfo1.pdf
dc.identifier.doi10.1111/mmi.13768
dc.identifier.sourceMolecular Microbiology
dc.identifier.citedreferenceRada, B. ( 2017 ) Interactions between neutrophils and Pseudomonas aeruginosa in cystic fibrosis. Pathogens 6: 10. doi: 10.3390/pathogens6010010.
dc.identifier.citedreferencePfaffl, M.W. ( 2001 ) A new mathematical model for relative quantification in realâ time RTâ PCR. Nucleic Acids Res 29: e45.
dc.identifier.citedreferenceRao, S., and Grigg, J. ( 2006 ) New insights into pulmonary inflammation in cystic fibrosis. Arch Dis Child 91: 786 â 788.
dc.identifier.citedreferenceRitchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K. ( 2015 ) limma powers differential expression analyses for RNAâ sequencing and microarray studies. Nucleic Acids Res 43: e47.
dc.identifier.citedreferenceRobinson, M.D., McCarthy, D.J., and Smyth, G.K. ( 2010 ) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139 â 140.
dc.identifier.citedreferenceSkaff, O., Pattison, D.I., and Davies, M.J. ( 2009 ) Hypothiocyanous acid reactivity with lowâ molecularâ mass and protein thiols: absolute rate constants and assessment of biological relevance. Biochem J 422: 111 â 117.
dc.identifier.citedreferenceSkaff, O., Pattison, D.I., Morgan, P.E., Bachana, R., Jain, V.K., Priyadarsini, K.I., and Davies, M.J. ( 2012 ) Seleniumâ containing amino acids are targets for myeloperoxidaseâ derived hypothiocyanous acid: determination of absolute rate constants and implications for biological damage. Biochem J 441: 305 â 316.
dc.identifier.citedreferenceSmall, D.A., Chang, W., Toghrol, F., and Bentley, W.E. ( 2007 ) Toxicogenomic analysis of sodium hypochlorite antimicrobial mechanisms in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 74: 176 â 185.
dc.identifier.citedreferenceTomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P., and Bukau, B. ( 2001 ) Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol Microbiol 40: 397 â 413.
dc.identifier.citedreferencevan Dalen, C.J., Whitehouse, M.W., Winterbourn, C.C., and Kettle, A.J. ( 1997 ) Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem J 327: 487 â 492.
dc.identifier.citedreferenceWang, J., and Slungaard, A. ( 2006 ) Role of eosinophil peroxidase in host defense and disease pathology. Arch Biochem Biophys 445: 256 â 260.
dc.identifier.citedreferenceWei, Q., Minh, P.N., Dotsch, A., Hildebrand, F., Panmanee, W., Elfarash, A., et al. ( 2012 ) Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res 40: 4320 â 4333.
dc.identifier.citedreferenceWinter, J., Ilbert, M., Graf, P.C., Ozcelik, D., and Jakob, U. ( 2008 ) Bleach activates a redoxâ regulated chaperone by oxidative protein unfolding. Cell 135: 691 â 701.
dc.identifier.citedreferenceWinter, J., Linke, K., Jatzek, A., and Jakob, U. ( 2005 ) Severe oxidative stress causes inactivation of DnaK and activation of the redoxâ regulated chaperone Hsp33. Mol Cell 17: 381 â 392.
dc.identifier.citedreferenceWinterbourn, C.C. ( 2008 ) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4: 278 â 286.
dc.identifier.citedreferenceWinterbourn, C.C., Kettle, A.J., and Hampton, M.B. ( 2016 ) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85: 765 â 792.
dc.identifier.citedreferenceArsene, F., Tomoyasu, T., and Bukau, B. ( 2000 ) The heat shock response of Escherichia coli. Int J Food Microbiol 55: 3 â 9.
dc.identifier.citedreferenceAshby, M.T. ( 2008 ) Inorganic chemistry of defensive peroxidases in the human oral cavity. J Dent Res 87: 900 â 914.
dc.identifier.citedreferenceAtichartpongkul, S., Vattanaviboon, P., Wisitkamol, R., Jaroensuk, J., Mongkolsuk, S., and Fuangthong, M. ( 2016 ) Regulation of organic hydroperoxide stress response by two OhrR homologs in Pseudomonas aeruginosa. PLoS One 11: e0161982.
dc.identifier.citedreferenceBarrett, T.J., and Hawkins, C.L. ( 2012 ) Hypothiocyanous acid: benign or deadly? Chem Res Toxicol 25: 263 â 273.
dc.identifier.citedreferenceBarrett, T.J., Pattison, D.I., Leonard, S.E., Carroll, K.S., Davies, M.J., and Hawkins, C.L. ( 2012 ) Inactivation of thiolâ dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates. Free Radic Biol Med 52: 1075 â 1085.
dc.identifier.citedreferenceBenjamini, Y., and Hochberg, Y. ( 1995 ) Controlling the false discovery rate â a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57: 289 â 300.
dc.identifier.citedreferenceCeragioli, M., Mols, M., Moezelaar, R., Ghelardi, E., Senesi, S., and Abee, T. ( 2010 ) Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments. Appl Environ Microbiol 76: 3352 â 3360.
dc.identifier.citedreferenceChandler, J.D., and Day, B.J. ( 2015 ) Biochemical mechanisms and therapeutic potential of pseudohalide thiocyanate in human health. Free Radic Res 49: 695 â 710.
dc.identifier.citedreferenceChandler, J.D., Nichols, D.P., Nick, J.A., Hondal, R.J., and Day, B.J. ( 2013 ) Selective metabolism of hypothiocyanous acid by mammalian thioredoxin reductase promotes lung innate immunity and antioxidant defense. J Biol Chem 288: 18421 â 18428.
dc.identifier.citedreferenceChi, B.K., Gronau, K., Mader, U., Hessling, B., Becher, D., and Antelmann, H. ( 2011 ) Sâ bacillithiolation protects against hypochlorite stress in Bacillus subtilis as revealed by transcriptomics and redox proteomics. Mol Cell Proteomics 10: M111 009506.
dc.identifier.citedreferenceCohen, T.S., and Prince, A. ( 2012 ) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18: 509 â 519.
dc.identifier.citedreferenceCox, J., and Mann, M. ( 2008 ) MaxQuant enables high peptide identification rates, individualized p.p.b.â range mass accuracies and proteomeâ wide protein quantification. Nat Biotechnol 26: 1367 â 1372.
dc.identifier.citedreferenceDahl, J.U., Gray, M.J., Bazopoulou, D., Beaufay, F., Lempart, J., Koenigsknecht, M.J., et al. ( 2017 ) The antiâ inflammatory drug mesalamine targets bacterial polyphosphate accumulation. Nat Microbiol 2: 16267.
dc.identifier.citedreferenceDahl, J.U., Gray, M.J., and Jakob, U. ( 2015 ) Protein quality control under oxidative stress conditions. J Mol Biol 427: 1549 â 1563.
dc.identifier.citedreferenceDas, D., De, P.K., and Banerjee, R.K. ( 1995 ) Thiocyanate, a plausible physiological electron donor of gastric peroxidase. Biochem J 305: 59 â 64.
dc.identifier.citedreferenceDavies, M.J. ( 2011 ) Myeloperoxidaseâ derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 48: 8 â 19.
dc.identifier.citedreferenceDavies, M.J., Hawkins, C.L., Pattison, D.I., and Rees, M.D. ( 2008 ) Mammalian heme peroxidases: from molecular mechanisms to health implications. Antioxid Redox Signal 10: 1199 â 1234.
dc.identifier.citedreferenceDukan, S., and Touati, D. ( 1996 ) Hypochlorous acid stress in Escherichia coli: resistance, DNA damage, and comparison with hydrogen peroxide stress. J Bacteriol 178: 6145 â 6150.
dc.identifier.citedreferenceFargier, E., Mac Aogain, M., Mooij, M.J., Woods, D.F., Morrissey, J.P., Dobson, A.D., et al. ( 2012 ) MexT functions as a redoxâ responsive regulator modulating disulfide stress resistance in Pseudomonas aeruginosa. J Bacteriol 194: 3502 â 3511.
dc.identifier.citedreferenceGalanâ Vasquez, E., Luna, B., and Martinezâ Antonio, A. ( 2011 ) The regulatory network of Pseudomonas aeruginosa. Microb Inform Exp 1: 3.
dc.identifier.citedreferenceGebendorfer, K.M., Drazic, A., Le, Y., Gundlach, J., Bepperling, A., Kastenmuller, A., et al. ( 2012 ) Identification of a hypochloriteâ specific transcription factor from Escherichia coli. J Biol Chem 287: 6892 â 6903.
dc.identifier.citedreferenceGraumann, J., Lilie, H., Tang, X., Tucker, K.A., Hoffmann, J.H., Vijayalakshmi, J., et al. ( 2001 ) Activation of the redoxâ regulated molecular chaperone Hsp33â a twoâ step mechanism. Structure 9: 377 â 387.
dc.identifier.citedreferenceGray, M.J., and Jakob, U. ( 2015 ) Oxidative stress protection by polyphosphateâ new roles for an old player. Curr Opin Microbiol 24: 1 â 6.
dc.identifier.citedreferenceGray, M.J., Wholey, W.Y., Parker, B.W., Kim, M., and Jakob, U. ( 2013 ) NemR is a bleachâ sensing transcription factor. J Biol Chem 288: 13789 â 13798.
dc.identifier.citedreferenceGray, M.J., Wholey, W.Y., Wagner, N.O., Cremers, C.M., Muellerâ Schickert, A., Hock, N.T., et al. ( 2014 ) Polyphosphate is a primordial chaperone. Mol Cell 53: 689 â 699.
dc.identifier.citedreferenceHawkins, C.L., Morgan, P.E., and Davies, M.J. ( 2009 ) Quantification of protein modification by oxidants. Free Radic Biol Med 46: 965 â 988.
dc.identifier.citedreferenceHmelo, L.R., Borlee, B.R., Almblad, H., Love, M.E., Randall, T.E., Tseng, B.S., et al. ( 2015 ) Precisionâ engineering the Pseudomonas aeruginosa genome with twoâ step allelic exchange. Nat Protoc 10: 1820 â 1841.
dc.identifier.citedreferenceIlbert, M., Horst, J., Ahrens, S., Winter, J., Graf, P.C., Lilie, H., and Jakob, U. ( 2007 ) The redoxâ switch domain of Hsp33 functions as dual stress sensor. Nat Struct Mol Biol 14: 556 â 563.
dc.identifier.citedreferenceKlebanoff, S.J. ( 2005 ) Myeloperoxidase: friend and foe. J Leukoc Biol 77: 598 â 625.
dc.identifier.citedreferenceKlebanoff, S.J., Kettle, A.J., Rosen, H., Winterbourn, C.C., and Nauseef, W.M. ( 2013 ) Myeloperoxidase: a frontâ line defender against phagocytosed microorganisms. J Leukoc Biol 93: 185 â 198.
dc.identifier.citedreferenceKogan, I., Ramjeesingh, M., Li, C., Kidd, J.F., Wang, Y., Leslie, E.M., Cole, S.P., and Bear, C.E. ( 2003 ) CFTR directly mediates nucleotideâ regulated glutathione flux. EMBO J 22: 1981 â 1989.
dc.identifier.citedreferenceLee, D.G., Urbach, J.M., Wu, G., Liberati, N.T., Feinbaum, R.L., Miyata, S., et al. ( 2006 ) Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol 7: R90.
dc.identifier.citedreferenceLi, H., and Durbin, R. ( 2009 ) Fast and accurate short read alignment with Burrowsâ Wheeler transform. Bioinformatics 25: 1754 â 1760.
dc.identifier.citedreferenceLi, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. ( 2009 ) The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078 â 2079.
dc.identifier.citedreferenceLister, P.D., Wolter, D.J., and Hanson, N.D. ( 2009 ) Antibacterialâ resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 22: 582 â 610.
dc.identifier.citedreferenceLorentzen, D., Durairaj, L., Pezzulo, A.A., Nakano, Y., Launspach, J., Stoltz, D.A., et al. ( 2011 ) Concentration of the antibacterial precursor thiocyanate in cystic fibrosis airway secretions. Free Radic Biol Med 50: 1144 â 1150.
dc.identifier.citedreferenceLove, D.T., Barrett, T.J., White, M.Y., Cordwell, S.J., Davies, M.J., and Hawkins, C.L. ( 2016 ) Cellular targets of the myeloperoxidaseâ derived oxidant hypothiocyanous acid (HOSCN) and its role in the inhibition of glycolysis in macrophages. Free Radic Biol Med 94: 88 â 98.
dc.identifier.citedreferenceMorris, J.C. ( 1966 ) The acid ionization constant of HOCl from 5 to 35°. J Phys Chem 70: 3798 â 3805.
dc.identifier.citedreferenceMuller, A., Langklotz, S., Lupilova, N., Kuhlmann, K., Bandow, J.E., and Leichert, L.I. ( 2014 ) Activation of RidA chaperone function by Nâ chlorination. Nat Commun 5: 5804.
dc.identifier.citedreferenceParker, B.W., Schwessinger, E.A., Jakob, U., and Gray, M.J. ( 2013 ) The RclR protein is a reactive chlorineâ specific transcription factor in Escherichia coli. J Biol Chem 288: 32574 â 32584.
dc.identifier.citedreferencePattison, D.I., Davies, M.J., and Hawkins, C.L. ( 2012 ) Reactions and reactivity of myeloperoxidaseâ derived oxidants: differential biological effects of hypochlorous and hypothiocyanous acids. Free Radic Res 46: 975 â 995.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.